The acoustic response of microbubbles (MBs) depends on their resonance frequency, which is dependent on the MB size and shell properties. Monodisperse MBs with tunable shell properties are thus desirable for optimizing and controlling the MB behavior in acoustics applications. By utilizing a novel microfluidic method that uses lipid concentration to control MB shrinkage, we generated monodisperse MBs of four different initial diameters at three lipid concentrations (5.6, 10.0, and 16.0 mg/mL) in the aqueous phase. Following shrinkage, we measured the MB resonance frequency and determined its shell stiffness and viscosity. The study demonstrates that we can generate monodisperse MBs of specific sizes and tunable shell properties by controlling the MB initial diameter and aqueous phase lipid concentration. Our results indicate that the resonance frequency increases by 180-210% with increasing lipid concentration (from 5.6 to 16.0 mg/mL), while the bubble diameter is kept constant. Additionally, we find that the resonance frequency decreases by 260-300% with an increasing MB final diameter (from 5 to 12 μm), while the lipid concentration is held constant. For example, our results depict that the resonance frequency increases by ∼195% with increasing lipid concentration from 5.6 to 16.0 mg/mL, for ∼11 μm final diameter MBs. Additionally, we find that the resonance frequency decreases by ∼275% with increasing MB final diameter from 5 to 12 μm when we use a lipid concentration of 5.6 mg/mL. We also determine that MB shell viscosity and stiffness increase with increasing lipid concentration and MB final diameter, and the level of change depends on the degree of shrinkage experienced by the MB. Specifically, we find that by increasing the concentration of lipids from 5.6 to 16.0 mg/mL, the shell stiffness and viscosity of ∼11 μm final diameter MBs increase by ∼400 and ∼200%, respectively. This study demonstrates the feasibility of fine-tuning the MB acoustic response to ultrasound by tailoring the MB initial diameter and lipid concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c01599DOI Listing

Publication Analysis

Top Keywords

lipid concentration
36
resonance frequency
24
final diameter
20
shell properties
16
160 mg/ml
16
monodisperse mbs
12
increasing lipid
12
lipid
10
concentration
10
size shell
8

Similar Publications

The aim of this study is to investigate the protective potential of IM57, IR51, and IR62 strains, isolated from infant feces, and their mixture against inflammatory bowel disease (IBD). The strains exhibited robust antioxidant activities and anti-inflammatory properties in RAW 264.7 cells.

View Article and Find Full Text PDF

Antibacterial activity of zinc oxide nanoparticles against Shewanella putrefaciens and its application in preservation of large yellow croaker (Pseudosciaena crocea).

Food Res Int

February 2025

Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China. Electronic address:

Specific spoilage organisms (SSOs) are the key factors affecting the deterioration of large yellow croaker. This study investigated the antibacterial activity and mechanism of Zinc oxide nanoparticles (ZnO-NPs) against Shewanella putrefaciens. The effects of different concentrations of ZnO-NPs (0.

View Article and Find Full Text PDF

To explore the effect of oleic acid, linoleic acid, and linolenic acid on "glucose-glutathione" Maillard reaction initial stage and meaty flavor compounds formation pathways, glutathione-Amadori compound was synthesized, and identified by Q/TOF and NMR. Depending on the concentration of glutathione and glutathione-Amadori compound quantified by UPLC-MS/MS, the unsaturated C18 fat acids inhibited glutathione Amadori compound formation or accelerated degradation, and oleic acid inhibited most markedly. The results showed that 65 volatile compounds were detected by GC-MS-O in four model systems.

View Article and Find Full Text PDF

Maillard-derived mung bean protein-peach gum conjugates: A novel emulsifier to improve stability, antioxidants, and physicochemical properties of chia seed oil nanoemulsion.

Food Res Int

February 2025

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

This research is designed to enhance the physio-chemical properties, constancy, and antioxidant activities of water-in-oil (W/O) emulsions containing chia seed oil (CSO) by utilizing mung bean protein isolate (MBPI)-peach gum (PG) conjugates, which were created through the Maillard reaction (MR), as the emulsifying agents. The emulsions were prepared using MBPI-PG produced through the Maillard reaction (EMRP) at concentrations of 0.5 %, 1 %, and 1.

View Article and Find Full Text PDF

Metabolomics and ionomics reveal the quality differences among peach, acacia and karaya gums.

Food Res Int

February 2025

College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China. Electronic address:

Despite the diverse industrial applications and health benefits of plant gums, significant variations in quality among different types remain underexplored. This study investigates the differences in antioxidant activity, mineral elements, and metabolic profiles among peach, acacia, and karaya gums. Our findings reveal significant differences in total phenol content, with peach gum exhibiting the highest (20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!