Platelets are essential in maintaining blood homeostasis and regulating several inflammatory processes. They constantly interact with immune cells, have immunoregulatory functions, and can affect, through immunologically active substances, endothelium, leukocytes, and other immune response components. In reverse, inflammatory and immune processes can activate platelets, which might be significant in autoimmune disease progression and arising complications. Thus, considering this interplay, targeting platelet activity may represent a new approach to treatment of autoimmune diseases. This review aims to highlight the role of platelets in the pathogenic mechanisms of the most frequent chronic autoimmune inflammatory diseases to identify gaps in current knowledge and to provide potential new targets for medical interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0043-1777071DOI Listing

Publication Analysis

Top Keywords

role platelets
8
chronic autoimmune
8
autoimmune inflammatory
8
inflammatory diseases
8
platelets rheumatic
4
rheumatic chronic
4
autoimmune
4
inflammatory
4
diseases platelets
4
platelets essential
4

Similar Publications

Dengue virus (DENV) poses a considerable threat to public health on a global scale, since about two-thirds of the world's population is currently at risk of contracting this arbovirus. Being transmitted by mosquitoes, this virus is associated with a range of illnesses and a small percentage of infected individuals might suffer from severe vascular leakage. This leakage leads to hypovolemic shock syndrome, generally known as dengue shock syndrome, organ failure, and bleeding complications.

View Article and Find Full Text PDF

Platelets are hyperactive in patients with type2 diabetes (T2DM), they adhere to vascular endothelium and play a key role in macrovascular complications. Platelets activity can be measured by flow-cytometry (cluster of differentiation (CD) 41, CD 42, CD 62, CD 63), which allows detection of surface antigens in a sensitive and specific manner. This study aimed to describe platelets activity in T2DM in association with cardiovascular and cerebrovascular complications in relation to duration of diabetes (DM).

View Article and Find Full Text PDF

Background: Systemic immune-inflammation index (SII) and neutrophil-to-lymphocyte ratio (NLR) are novel inflammatory markers based on neutrophil, platelet and lymphocyte counts. Atherosclerosis is a chronic inflammatory vascular disease. This study aimed to verify the predictive value of the clinical parameters such as systemic immune-inflammation index (SII) and neutrophil-to-lymphocyte ratio (NLR) for the severity in Large Artery Atherosclerosis (LAA) stroke patients.

View Article and Find Full Text PDF

Background: Dupilumab is a safe and effective treatment for moderate to severe atopic dermatitis (AD), but real-world data in pediatric patients in China are limited. Currently, there is no exploration of changes in blood cell counts derived indexes in pediatric patients, especially under 6 years old.

Purpose: To investigate the changes in blood cell counts derived indexes before and after dupilumab treatment in Chinese children with AD, the relationship with clinical scores, and the potential role of these indexes on treatment efficacy.

View Article and Find Full Text PDF

Apoptotic Vesicles Attenuate Acute Lung Injury CD73-Mediated Inhibition of Platelet Activation and NETosis.

Int J Nanomedicine

January 2025

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.

Introduction: Acute respiratory distress syndrome (ARDS) is a life-threatening type of acute lung injury (ALI) characterized by elevated mortality rates and long-term effects. To date, no pharmacological treatment has proven effective for ARDS. Mesenchymal stem cell-derived apoptotic vesicles (apoVs) were recently found to have excellent therapeutic potential for inflammatory diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!