Recovering nutrients from waste for biological processes aligns with sustainability principles. This study aimed to convert spent coffee grounds (SCG) into valuable products, including fermentable sugars, volatile fatty acids (VFAs), yeast-based single-cell protein and biofuels. Alkaline pretreatment was conducted before enzymatic hydrolysis, in which the pretreated SCG was hydrolyzed with varying enzyme loadings (20-60 filter paper units (FPU)/g-solid) and solid loadings (3-15 % w/v). The hydrolyzed slurry was utilized for VFAs and hydrogen production, yielding high values of 0.66 g/g-volatile solids (VS) and 109 mL/g-VS, respectively, using an enzyme loading of 50 FPU/g-solid and a solid loading of 3 % (w/v). The derived VFAs were used to cultivate a newly isolated yeast, Candida maltosa KKU-ARY2, resulting in an accumulated protein content of 43.7 % and a biomass concentration of 4.6 g/L. This study highlights the conversion of SCG into essential components, emphasizing the benefits of waste utilization through cascade bioprocesses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.130107DOI Listing

Publication Analysis

Top Keywords

spent coffee
8
coffee grounds
8
fermentable sugars
8
sugars volatile
8
volatile fatty
8
fatty acids
8
yeast-based single-cell
8
single-cell protein
8
protein biofuels
8
fpu/g-solid solid
8

Similar Publications

Spent coffee grounds (SCGs) have been explored for use as various bioresources, such as biofuels, and are known to possess biological functions, including antioxidant activity. However, the antibiofilm properties of SCGs against pathogenic bacteria have not been fully investigated. Therefore, this study aimed to highlight the inhibitory effects of SCG extract (SCGE) on biofilm formation in Listeria monocytogenes and investigated the underlying mechanisms.

View Article and Find Full Text PDF

This study introduces an innovative approach to high-resolution latent fingerprint detection using carbon quantum dots (CQDs) biosynthesized from spent coffee grounds, enhanced with nitrogen doping. Conventional fingerprinting methods frequently use hazardous chemicals and are costly, highlighting the need for eco-friendly, affordable alternatives that preserve detection quality. The biosynthesized nitrogen-doped CQDs exhibit strong photoluminescence and high stability, offering a sustainable, effective alternative for fingerprint imaging.

View Article and Find Full Text PDF

Background: Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications.

View Article and Find Full Text PDF

Exploring Spent Coffee Grounds: Comprehensive Morphological Analysis and Chemical Characterization for Potential Uses.

Molecules

December 2024

Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1 N 70-01, Medellín 050031, Colombia.

The agroindustry generates substantial quantities of byproducts, particularly in coffee production, which yields significant waste, most notably spent coffee grounds (SCGs). This study explores the potential of SCGs as a versatile resource for applications in both food and nonfood sectors. A comprehensive chemical analysis revealed that SCGs consist of 30.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!