Simultaneous chelated heavy metals removal and sludge recovery through titanium coagulation: From waste to resource.

Sci Total Environ

Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China. Electronic address:

Published: February 2024

Green methods for chelated heavy metals treatment and recovery are essential for coordinated development of resources and environment. Herein, a simple and competent method, titanium salt (TiCl) coagulation was developed to remove and recycle chelated heavy metals. Our results revealed that this method proved to be effective for metals-citrate [Cu(II), Ni(II), Zn(II) and Cr(VI)], achieving removal efficiencies of 95 %, 92 %, 99 %, and 99 % within 30 min, surpassing direct alkaline precipitation and well-used Fe(III) coagulation. Whereafter, the copper-containing sludge was successfully transformed into copper-doped titanium dioxide (TiO) photocatalysts by facile calcination. Through comprehensively investigating physicochemical properties by a suite of characterization techniques, we confirmed that doping of Cu induced bandgap narrowing, high specific surface area as well as the formation of oxygen vacancy. Accordingly, the recycling photocatalysts showed remarkable enhanced photocatalytic performance than the pristine TiO, achieving improvement in the degradation efficiency of 82 %, 61 % and 67 % for carbamazepine(CBZ), bisphenol A (BPA) and methyl orange (MO). In addition, both radical (OH and O) and non-radical (O and h) pathways synergistically contributed to the removal of organic pollutants during photocatalysis. Ultimately, based on economic feasibility assessment and life cycle assessment (LCA), the copper-containing titanium coagulation sludge reuse for photocatalyst could bring lower carbon emissions, reduced environmental risks and higher economic benefits. The elucidation of this study provides new insights into the removal and recycle of chelated heavy metals from wastewater by using an environment-friendly and cost-effective method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168821DOI Listing

Publication Analysis

Top Keywords

chelated heavy
16
heavy metals
16
titanium coagulation
8
recycle chelated
8
simultaneous chelated
4
heavy
4
metals
4
removal
4
metals removal
4
removal sludge
4

Similar Publications

The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.

View Article and Find Full Text PDF

Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.

Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.

View Article and Find Full Text PDF

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

Enzyme-instructed signal generation at liquid-liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil-water interface via a copper-mediated "click" reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!