A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mental image reconstruction from human brain activity: Neural decoding of mental imagery via deep neural network-based Bayesian estimation. | LitMetric

Mental image reconstruction from human brain activity: Neural decoding of mental imagery via deep neural network-based Bayesian estimation.

Neural Netw

Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; JST PRESTO, Saitama 332-0012, Japan. Electronic address:

Published: February 2024

Visual images observed by humans can be reconstructed from their brain activity. However, the visualization (externalization) of mental imagery is challenging. Only a few studies have reported successful visualization of mental imagery, and their visualizable images have been limited to specific domains such as human faces or alphabetical letters. Therefore, visualizing mental imagery for arbitrary natural images stands as a significant milestone. In this study, we achieved this by enhancing a previous method. Specifically, we demonstrated that the visual image reconstruction method proposed in the seminal study by Shen et al. (2019) heavily relied on low-level visual information decoded from the brain and could not efficiently utilize the semantic information that would be recruited during mental imagery. To address this limitation, we extended the previous method to a Bayesian estimation framework and introduced the assistance of semantic information into it. Our proposed framework successfully reconstructed both seen images (i.e., those observed by the human eye) and imagined images from brain activity. Quantitative evaluation showed that our framework could identify seen and imagined images highly accurately compared to the chance accuracy (seen: 90.7%, imagery: 75.6%, chance accuracy: 50.0%). In contrast, the previous method could only identify seen images (seen: 64.3%, imagery: 50.4%). These results suggest that our framework would provide a unique tool for directly investigating the subjective contents of the brain such as illusions, hallucinations, and dreams.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.11.024DOI Listing

Publication Analysis

Top Keywords

mental imagery
20
brain activity
12
previous method
12
image reconstruction
8
bayesian estimation
8
images observed
8
imagined images
8
chance accuracy
8
imagery
7
images
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!