Metal halide perovskite light-emitting diodes (PeLEDs) are attracting increasing attention due to their potential applications in flat panel lighting and displays. The solution process, large-area fabrication, and flexibility are attractive properties of PeLEDs over traditional inorganic LEDs. However, it is still very challenging to deposit uniform perovskite films on flexible substrates using a blade or slot-die coating, as the flexible substrate is not perfectly flat. Here, the inkjet printing technique is adopted, and the key challenges are overcome step-by-step in preparing large-area films on flexible substrates. Double-hole transporting layers are first used and a wetting interfacial layer to improve the surface wettability so that the printed perovskite droplets can form a continuous wet film. The fluidic and evaporation dynamics of the perovskite wet layer is manipulated to suppress the coffee ring effect by solvent engineering. Uniform perovskite films are obtained finally on flexible substrates with different perovskite compositions. The peak external quantum efficiency of the inkjet-printed PeLEDs reaches 14.3%. Large-area flexible PeLEDs (4 × 7 cm ) also show very uniform emission. This work represents a significant step toward real applications of large-area PeLEDs in flexible flat-panel lighting.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202309921DOI Listing

Publication Analysis

Top Keywords

flexible substrates
12
large-area flexible
8
perovskite light-emitting
8
light-emitting diodes
8
inkjet printing
8
uniform perovskite
8
perovskite films
8
films flexible
8
perovskite
7
flexible
6

Similar Publications

Multilayer Graphene Stacked with Silver Nanowire Networks for Transparent Conductor.

Materials (Basel)

January 2025

Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.

A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.

View Article and Find Full Text PDF

An Investigation of the Indentation Elastic Modulus for Metal Films on Flexible Substrates Considering the Substrate Effect.

Materials (Basel)

January 2025

Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University, Andong 36729, Republic of Korea.

The accurate measurement of the elastic modulus of thin metal films on flexible substrates is critical for understanding the mechanical reliability of flexible electronics. However, conventional methods, such as the Oliver-Pharr model, often underestimate the modulus due to substrate effects, particularly with low-modulus substrates like polyimide (PI). In this study, we propose an improved weighting model that replaces the empirical weighting factor with a variable X to better account for substrate contributions.

View Article and Find Full Text PDF

Corona Poling Enabling Gravure Printing of Electroactive Flexible PVDF-TrFE Devices.

Materials (Basel)

December 2024

Portici Research Centre, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 80055 Portici, Italy.

Polyvinylidene fluoride (PVDF)-based materials are the most researched polymers in the field of energy harvesting. Their production in thin-film form through printing technologies can potentially offer several manufacturing and performance advantages, such as low-cost, low-temperature processing, use of flexible substrates, custom design, low thermal inertia and surface-scaling performance. However, solution-based processes, like printing, miss fine control of the microstructure during film-forming, making it difficult to achieve a high level of polarization, necessary for PVDF to exhibit electroactive characteristics.

View Article and Find Full Text PDF

Forging additive hybrid manufacturing integrated the high efficiency of forging and the great flexibility of additive manufacturing, which has significant potential in the construction of reactor pressure vessels (RPVs). In the components, the heat-affected zone (HAZ, also called as bonding zone) between the forged substrate zone and the arc deposition zone was key to the final performance of the components. In this study, the Mn-Mo-Ni welding wire was deposited on the 16MnD5 substrate with a submerged arc heat source.

View Article and Find Full Text PDF

We have executed a cost-effective approach to produce a high-performance multifunctional human-machine interface (HMI) humidity sensor. The designed sensors were ecofriendly, flexible, and highly sensitive to variability in relative humidity (%RH) in the surroundings. In this study, we have introduced a humidity sensor by using carbon paper (as both a substrate and sensing material) and a silver (Ag) conductive ink pen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!