A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Graph Reasoning Module for Alzheimer's Disease Diagnosis: A Plug-and-Play Method. | LitMetric

Recent advances in deep learning have led to increased adoption of convolutional neural networks (CNN) for structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) detection. AD results in widespread damage to neurons in different brain regions and destroys their connections. However, current CNN-based methods struggle to relate spatially distant information effectively. To solve this problem, we propose a graph reasoning module (GRM), which can be directly incorporated into CNN-based AD detection models to simulate the underlying relationship between different brain regions and boost AD diagnosis performance. Specifically, in GRM, an adaptive graph Transformer (AGT) block is designed to adaptively construct a graph representation based on the feature map given by CNN, a graph convolutional network (GCN) block is adopted to update the graph representation, and a feature map reconstruction (FMR) block is built to convert the learned graph representation to a feature map. Experimental results demonstrate that the insertion of the GRM in the existing AD classification model can increase its balanced accuracy by more than 4.3%. The GRM-embedded model achieves state-of-the-art performance compared with current deep learning-based AD diagnosis methods, with a balanced accuracy of 86.2%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2023.3337533DOI Listing

Publication Analysis

Top Keywords

graph representation
12
feature map
12
graph reasoning
8
reasoning module
8
alzheimer's disease
8
brain regions
8
representation feature
8
balanced accuracy
8
graph
7
module alzheimer's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!