We report, for the first time, a multimodal investigation of current crude oil reprocessing and storage sites to assess their impact on the environment after 50 years of continuous operation. We have adopted a dual approach to investigate potential soil contamination. The first approach uses conventional analytical techniques energy dispersive X-ray fluorescence (ED-XRF) for metal analysis, and a complementary metabolomic investigation using hydrophilic liquid interaction chromatography hi-resolution mass spectrometry (HILIC-MS) for organic contaminants. Secondly, the deployment of an unmanned aerial vehicle (UAV) with a multispectral image (MSI) camera, for the remote sensing of vegetation stress, as a proxy for sub-surface soil contamination. The results identified high concentrations of barium (mean 21 017 ± 5950 μg g, = 36) as well as metabolites derived from crude oil (polycyclic aromatic hydrocarbons), cleaning processes (surfactants) and other organic pollutants ( pesticides, plasticizers and pharmaceuticals) in the reprocessing site. This data has then been correlated, with post-flight data analysis derived vegetation indices (NDVI, GNDVI, SAVI and Cl green VI), to assess the potential to identify soil contamination because of vegetation stress. It was found that strong correlations exist (an average of >0.68) between the level of soil contamination and the ground cover vegetation. The potential to deploy aerial remote sensing techniques to provide an initial survey, to inform decision-making, on suspected contaminated land sites can have global implications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3em00480eDOI Listing

Publication Analysis

Top Keywords

soil contamination
20
remote sensing
12
stress proxy
8
crude oil
8
vegetation stress
8
soil
5
contamination
5
sensing assess
4
assess vegetative
4
vegetative stress
4

Similar Publications

Contamination of soils with toxic metals poses significant threats to human health and ecosystems. Plant-based remediation strategies can play a vital role in mitigating these risks, and the use of plants as a remediation strategy can help reduce these risks. In this study, we investigate the remediation potential of native plants in accumulating and translocating metal(loid)s at a Colombian site impacted by gold mining.

View Article and Find Full Text PDF

Reproductive effects of the insecticide acephate on a springtail and an enchytraeid in a subtropical soil.

Environ Toxicol Chem

January 2025

Universidade do Estado de Santa Catarina (UDESC Lages), Departmento de Solos e Recursos Naturais, Lages, SC, Brazil.

The widespread use of acephate, a common insecticide, raises concerns about its potential impacts on nontarget soil organisms. This study investigated the chronic effects of acephate on the reproduction of two key soil fauna species, the springtail Folsomia candida and the enchytraeid Enchytraeus crypticus. We exposed these organisms to acephate in both natural Cambisol soil and tropical artificial soil (TAS) to assess potential impacts under different environmental conditions.

View Article and Find Full Text PDF

Abiotic and Biotic Dissipation in Natural Attenuation of Phenanthrene and Benzo[a]pyrene: A Systematic Quantification Study in Contrasting Soils.

Environ Pollut

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.

Natural attenuation represents a significant ecosystem function for mitigating the quantity and toxicity of polycyclic aromatic hydrocarbons (PAHs) through both abiotic and biotic dissipation processes. This study systematically investigated abiotic and biotic dissipation of phenanthrene (Phe) and benzo[a]pyrene (BaP) in four soils over 360 days, using CSIA to quantitatively analyze δ³C changes and demonstrate biodegradation. The results indicated that extractable Phe was primarily attenuated via biodegradation (65% - 81%), as revealed by CSIA, with the δ³C changes ranging from 2.

View Article and Find Full Text PDF

Integrated Quantitative Tracing for Karst Groundwater Contamination: A Case Study of Landfill in Zunyi, Guizhou Province, China.

Environ Pollut

January 2025

114 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, Zunyi, 563000, China; Karst Water Resources and Environment Academician Workstation of Guizhou Province, Zunyi 563000, China.

Sudden groundwater pollution in karst areas poses a serious threat to drinking water safety. Tracing contamination sources is crucial for managing and remediating groundwater pollution. Traditional tracing methods often lack accuracy, so this study combined multiple techniques to trace and quantify pollution sources near the municipal solid waste (MSW) landfill in Zunyi City, Guizhou Province, China.

View Article and Find Full Text PDF

The gut microbiota: A key player in cadmium toxicity - implications for disease, interventions, and combined toxicant exposures.

J Trace Elem Med Biol

November 2024

Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic address:

Cadmium (Cd) is a highly toxic heavy metal contaminant found in soil and water due to human activities such as mining and industrial discharge. Cd can accumulate in the body, leading to various health risks such as organ injuries, osteoporosis, renal dysfunction, Type 2 diabetes (T2DM), reproductive diseases, hypertension, cardiovascular diseases, and cancers. The gut is particularly sensitive to Cd toxicity as it acts as the primary barrier against orally ingested Cd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!