To divide, bacteria must synthesize their peptidoglycan (PG) cell wall, a protective meshwork that maintains cell shape. FtsZ, a tubulin homolog, dynamically assembles into a midcell band, recruiting division proteins, including the PG synthases FtsW and FtsI. FtsWI are activated to synthesize PG and drive constriction at the appropriate time and place. However, their activation pathway remains unresolved. In Caulobacter crescentus, FtsWI activity requires FzlA, an essential FtsZ-binding protein. Through time-lapse imaging and single-molecule tracking of Caulobacter FtsW and FzlA, we demonstrate that FzlA is a limiting constriction activation factor that signals to promote conversion of inactive FtsW to an active, slow-moving state. We find that FzlA interacts with the DNA translocase FtsK and place FtsK genetically in a pathway with FzlA and FtsWI. Misregulation of the FzlA-FtsK-FtsWI pathway leads to heightened DNA damage and cell death. We propose that FzlA integrates the FtsZ ring, chromosome segregation, and PG synthesis to ensure robust and timely constriction during Caulobacter division.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683668PMC
http://dx.doi.org/10.1083/jcb.202211026DOI Listing

Publication Analysis

Top Keywords

cell wall
8
chromosome segregation
8
fzla
6
integration cell
4
wall synthesis
4
synthesis chromosome
4
cell
4
segregation cell
4
cell division
4
caulobacter
4

Similar Publications

Cystic Basal Cell Carcinoma with a Giant Vulvar Cyst.

Acta Dermatovenerol Croat

November 2024

Takayuki Suyama, MD, PhD, Department of Dermatology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-koshigaya, Koshigaya, Saitama, 343-8555, Japan; ORCID ID: 0000-0002-6986-411X.

Cystic basal cell carcinoma (BCC) is a rare subtype of BCC (1). Histologically, it is usually characterized by multiple small cysts without a clinical cystic appearance (2). Herein, we report an unusual case of cystic BCC with a large vulvar cyst.

View Article and Find Full Text PDF

Background And Aims: Cadherins are adhesion proteins, and their dysregulation may result in the development of atherosclerosis, plaque rupture, or lesions of the vascular wall. The aim of the present study was to detect the associations of cadherins-P, -E, and -H, with atherosclerosis and pathological cardiovascular conditions.

Methods And Results: The present study with 3-year follow up evaluated atherosclerosis and fasting levels of P-, E-, and H-cadherins in the serum samples of 214 patients in a hospital setting.

View Article and Find Full Text PDF

The recalcitrance of to antibiotic treatment has been broadly attributed to the impermeability of the organism's outer mycomembrane. However, the studies that support this inference have been indirect and/or reliant on bulk population measurements. We previously developed the P eptidoglycan A ccessibility C lick- M ediated A ssessme N t (PAC-MAN) method to covalently trap azide-modified small molecules in the peptidoglycan cell wall of live mycobacteria, after they have traversed the mycomembrane.

View Article and Find Full Text PDF

Microbial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.

View Article and Find Full Text PDF

Grapes are prone to softening, which limits their shelf life and suitability for long-distance transport. This study explored the molecular mechanisms underlying the effects of the chemical preservatives gibberellin (GA) and the nitric oxide donor sodium nitroprusside (SNP) on grape firmness. Enhancing grape quality, prolonging shelf life, and extending market supply were key objectives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!