While physical performance has long been thought to be limited only by physiological factors, many experiments denote that psychological ones can also influence it. Specifically, the deception paradigm investigates the effect of psychological factors on performance by manipulating a psychological variable unbeknownst to the subjects. For example, during a physical exercise performed to failure, previous results revealed an improvement in performance (i.e., holding time) when the clock shown to the subjects was deceptively slowed down. However, the underlying neurophysiological changes supporting this performance improvement due to deceptive time manipulation remain unknown. Here, we addressed this issue by investigating from a neuromuscular perspective the effect of a deceptive clock manipulation on a single-joint isometric task conducted to failure in 24 healthy participants (11 females). Neuromuscular fatigue was assessed by pre- to post-exercise changes in quadriceps maximal voluntary torque (T ), voluntary activation level (VAL), and potentiated twitch (T ). Our main results indicated a significant performance improvement when the clock was slowed down (Biased: 356 ± 118 s vs. Normal: 332 ± 112 s, p = .036) but, surprisingly, without any difference in the associated neuromuscular fatigue (p > .05 and BF < 0.3 for T , VAL, and T between both sessions). Computational modeling showed that, when observed, the holding time improvement was explained by a neuromuscular fatigue accumulation based on subjective rather than actual time. These results support a psychological influence on neuromuscular processes and contribute significantly to the literature on the mind-body influence, by challenging our understanding of fatigue.

Download full-text PDF

Source
http://dx.doi.org/10.1111/psyp.14487DOI Listing

Publication Analysis

Top Keywords

neuromuscular fatigue
16
time manipulation
8
physical performance
8
fatigue accumulation
8
psychological influence
8
holding time
8
performance improvement
8
performance
6
neuromuscular
6
time
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!