A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical loading intensities affect the release of extracellular vesicles from mouse bone marrow-derived hematopoietic progenitor cells and change their osteoclast-modulating effect. | LitMetric

AI Article Synopsis

  • Low-intensity mechanical loading helps maintain or increase bone mass, while high-intensity loading can decrease bone mass by impacting extracellular vesicle release from bone cells.
  • The study explored how low and high mechanical loading intensities affect the behavior of extracellular vesicles from hematopoietic progenitor cells and their ability to modulate osteoclast formation, a type of bone cell involved in bone resorption.
  • Results showed that microvesicles from low-intensity loading reduced osteoclast formation, whereas exosomes from high-intensity loading had the opposite effect; both effects could be altered by inhibiting vesicle release or biogenesis.

Article Abstract

Low-intensity loading maintains or increases bone mass, whereas lack of mechanical loading and high-intensity loading decreases bone mass, possibly via the release of extracellular vesicles by mechanosensitive bone cells. How different loading intensities alter the biological effect of these vesicles is not fully understood. Dynamic fluid shear stress at low intensity (0.7 ± 0.3 Pa, 5 Hz) or high intensity (2.9 ± 0.2 Pa, 1 Hz) was used on mouse hematopoietic progenitor cells for 2 min in the presence or absence of chemical compounds that inhibit release or biogenesis of extracellular vesicles. We used a Receptor activator of nuclear factor kappa-Β ligand-induced osteoclastogenesis assay to evaluate the biological effect of different fractions of extracellular vesicles obtained through centrifugation of medium from hematopoietic stem cells. Osteoclast formation was reduced by microvesicles (10 000× g) obtained after low-intensity loading and induced by exosomes (100 000× g) obtained after high-intensity loading. These osteoclast-modulating effects could be diminished or eliminated by depletion of extracellular vesicles from the conditioned medium, inhibition of general extracellular vesicle release, inhibition of microvesicle biogenesis (low intensity), inhibition of ESCRT-independent exosome biogenesis (high intensity), as well as by inhibition of dynamin-dependent vesicle uptake in osteoclast progenitor cells. Taken together, the intensity of mechanical loading affects the release of extracellular vesicles and change their osteoclast-modulating effect.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202301520RDOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
24
mechanical loading
12
release extracellular
12
progenitor cells
12
loading intensities
8
hematopoietic progenitor
8
change osteoclast-modulating
8
low-intensity loading
8
bone mass
8
high-intensity loading
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!