Fluoroalkylated compounds are of high interest in drug discovery and have inspired the evolution of diverse C-F bond activation methodologies. However, the selective activation of polyfluorinated compounds remains challenging. Herein, we describe an unprecedented strategy for synthesizing enantioenriched fluorofuro[3,2-]indolines through the organocatalytic aza-Friedel-Crafts reaction coupled with selective C-F bond activation. These reactions feature excellent enantioselectivities (≤96% ee) and yields (≤96%) as well as good functional group compatibility. Mechanistic investigations by means of F nuclear magnetic resonance experiments provided sufficient support for silica gel as the key medium in this transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.3c03445DOI Listing

Publication Analysis

Top Keywords

c-f bond
12
bond activation
12
organocatalytic aza-friedel-crafts
8
highly enantioselective
4
enantioselective synthesis
4
synthesis 3-fluorofuro[32-]indolines
4
3-fluorofuro[32-]indolines organocatalytic
4
aza-friedel-crafts reaction/selective
4
reaction/selective c-f
4
activation
4

Similar Publications

Photoexcited Hantzsch Ester Anions Enabled C-F Bond Activation and Hydro-difluoroalkylation of Arylethylenes Through Dual-SET Process.

Chemistry

December 2024

Huaibei Normal University, Key laboratory of green and precise synthetic chemistry and applications, ministry of education, No.100 Dongshan Road, Xiangshan District, 235000, Huaibei, CHINA.

In this study, we reported a new approach to activate the C-F bond of trifluoromethylarenes to achieve the hydro-difluoroalkylation of arylethylenes using photoexcited Hantzsch esters (HEs) anions. A wide range of α,α-difluoroalkanes was synthesized. Late-stage functionalization of drug molecules and synthesis of bioactive molecule bioisostere were also presented.

View Article and Find Full Text PDF

The heme paradigm where Fe=O acts as the C-H oxidant and Fe-OH rebounds with the formed carbon-centered radical guides the design of the prototypical synthetic hydroxylation catalyst. We are exploring methods to evolve beyond the metal-oxo oxidant and hydroxide rebound, to incorporate a wider array of functional group. We have demonstrated the application of CoII(OTf)2 (10 mol% catalyst; OTf = trimfluoromethanesulfonate) in combination with polydentate N-donor ligands (e.

View Article and Find Full Text PDF

Electrophilic aromatic substitution at the C5 position of isoxazolines and construction of a new quaternary carbon center were achieved in this paper. This is the first report of carbon-carbon (C-C) bond formation onto isoxazoline without compromising the ring structure. Various aromatics including heteroaromatics gave the desired products in good yields, especially aromatics bearing electron-donating groups.

View Article and Find Full Text PDF

Unveiling Tetrafluoromethane Decomposition over Alumina Catalysts.

J Am Chem Soc

December 2024

School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, P. R. China.

Article Synopsis
  • * Researchers utilized constrained ab initio molecular dynamics (cAIMD) simulations and experiments to study how alumina catalysts break down CF, noting that surface hydroxyl groups significantly enhance the reaction efficiency by lowering energy barriers.
  • * Findings indicate that CF decomposition doesn't simply produce CO but also generates byproducts like CFO, with water mainly serving to replenish hydroxyl groups rather than directly participating in reactions.
View Article and Find Full Text PDF

Organic Cathode Electrolyte Interphase Achieving 4.8 V LiCoO.

Angew Chem Int Ed Engl

December 2024

Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.

Developing high-voltage electrolytes to stabilize LiCoO (LCO) cycling remains a challenge in lithium-ion batteries. Constructing a high-quality cathode electrolyte interphase (CEI) is essential to mitigate adverse reactions at high voltages. However, conventional inorganic CEIs dominated by LiF have shown limited performance for high-voltage LCO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!