Thiazolopyrimidinone Derivative H5-23 Enhances Daptomycin Activity against Linezolid-Resistant by Disrupting the Cell Membrane.

ACS Infect Dis

Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital and the Sixth Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China.

Published: December 2023

AI Article Synopsis

  • Multidrug-resistant Gram-positive pathogens are a growing global health threat, and the compound H5-23 has shown promising antibacterial effects against these resistant bacteria.
  • Research reveals that H5-23, particularly in combination with daptomycin (DAP), enhances antibacterial activity, effectively killing various bacterial forms and preventing biofilm formation.
  • Mechanistic studies indicate that H5-23 works by increasing membrane permeability and inducing reactive oxygen species production, making it a potential new strategy for improving treatment against multidrug-resistant infections.

Article Abstract

The increasing emergence and dissemination of multidrug-resistant (MDR) Gram-positive pathogens pose a serious threat to global public health. Previous reports have demonstrated that the compound H5-23, which has a thiazolopyrimidinone core structure, exhibited antibacterial activity against . However, the antibacterial activity and mechanism of action of H5-23 against MDR bacteria have not been fully studied. In this study, we report that H5-23 has wide-spectrum antibacterial activity against Gram-positive bacteria. When combined with daptomycin (DAP), H5-23 demonstrates enhanced antimicrobial activity, effectively killing both planktonic and persister cells, as well as eradicating biofilm formation by linezolid-resistant . The development of resistance shows that H5-23 has a low propensity to induce antibiotic resistance compared to that of linezolid . Mechanistic studies reveal that H5-23 increases membrane permeability and disrupts membrane integrity, resulting in increased production of reactive oxygen species (ROS), metabolic perturbations, and ultimately cell death. Additionally, we demonstrate the synergistic antibacterial effect of H5-23 combined with DAP in a murine model. These findings suggest that H5-23 is a promising antimicrobial agent and provides a potential strategy for enhancing the efficacy of DAP in combating multidrug-resistant .

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.3c00387DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
12
h5-23
9
activity
5
thiazolopyrimidinone derivative
4
derivative h5-23
4
h5-23 enhances
4
enhances daptomycin
4
daptomycin activity
4
activity linezolid-resistant
4
linezolid-resistant disrupting
4

Similar Publications

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

Endophytes are microorganisms residing in plant tissues without causing harm and their relevance in medicinal plants has grown due to their biomolecules used in pharmaceuticals. This study isolated two endophytic bacterial strains from the leaves of M. oleifera and P.

View Article and Find Full Text PDF

Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!