The visualization and analysis of organic solvents using fluorescent sensors are crucial, given their association with environmental safety and human health. Conventional fluorescent sensors are typically single-use sensors and they often require sophisticated measurement instruments, which limits their practical and diverse applications. Herein, we develop solvatochromic nitrogen and sulfur codoped carbon dots (NS-CDs)-based organogel sensors that display color changes in response to different solvents. NS-CDs are synthesized using a solvothermal method to produce monodispersed particles with exceptional solubility in various organic solvents. NS-CDs exhibit distinct photoluminescent emission spectra that correlate with the solvent polarity, and the solvent-dependent photoluminescent mechanism is investigated in detail. To highlight the potential application of solvatochromic NS-CDs, portable and low-cost NS-CDs-embedded organogel sensors are fabricated. These sensors exhibit highly robust solvatochromic performance despite repeated solvent switches, thus ensuring consistent and reliable measurements in practical applications. This study provides valuable insights into the solvatochromism of carbon dots and opens up new avenues for designing real-time organic solvent sensing platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202300542 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!