Since the outbreak in 2019, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become the deadliest infectious disease worldwide for people of all ages, from children to older adults. As a main structural protein of SARS-CoV-2, spike protein is reported to play a key role in the entry of the virus into host cells and is considered as an effective antigenic marker for COVID-19 diagnosis. Herein, we develop a new aptamer-based fluorescence method for SARS-CoV-2 spike protein detection based on using kinetically controlled DNA reactions and metal-organic framework nanoprobes. Specifically, the binding of SARS-CoV-2 spike protein to its aptamer is designed to precisely control the kinetics of a DNA displacement reaction, leading to the release of free signaling probes. By reasonable integration of magnetic enrichment and exonuclease-fuelled recycling, the released probes efficiently disrupt the interaction within metal-organic framework nanoprobes, thereby generating a remarkable fluorescent response. Experimental results show that the method not only exhibits a wide linear range and a low detection limit of 7.8 fg mL for SARS-CoV-2 spike protein detection but also demonstrates desirable specificity and utility in complex samples. Therefore, the method may provide a valuable tool for the detection of SARS-CoV-2 spike protein, and has bright prospects in the rapid diagnosis of COVID-19, which is of great significance for guiding rational treatment during a pandemic of respiratory infectious diseases and reducing the occurrence of severe disease in children.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ay01585hDOI Listing

Publication Analysis

Top Keywords

sars-cov-2 spike
24
spike protein
24
metal-organic framework
12
framework nanoprobes
12
kinetically controlled
8
controlled dna
8
dna reactions
8
detection sars-cov-2
8
protein detection
8
sars-cov-2
7

Similar Publications

Structural proteins of human coronaviruses: what makes them different?

Front Cell Infect Microbiol

December 2024

Biology Department, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan.

Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E.

View Article and Find Full Text PDF

SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity.

View Article and Find Full Text PDF

A predictive language model for SARS-CoV-2 evolution.

Signal Transduct Target Ther

December 2024

School of Basic Medical Science, Tsinghua University, 30 Shuangqing Rd., Haidian District, Beijing, 100084, China.

Modeling and predicting mutations are critical for COVID-19 and similar pandemic preparedness. However, existing predictive models have yet to integrate the regularity and randomness of viral mutations with minimal data requirements. Here, we develop a non-demanding language model utilizing both regularity and randomness to predict candidate SARS-CoV-2 variants and mutations that might prevail.

View Article and Find Full Text PDF

Combination of spatial transcriptomics analysis and retrospective study reveals liver infection of SARS-COV-2 is associated with clinical outcomes of COVID-19.

EBioMedicine

December 2024

Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China. Electronic address:

Background: Liver involvement is a common complication of coronavirus disease 2019 (COVID-19), especially in hospitalized patients. However, the underlying mechanisms involved are not fully understood.

Methods: Immunohistochemistry (IHC) staining of SARS-CoV-2 spike (S) and nucleocapsid (N) proteins was conducted on liver tissues from six patients with COVID-19.

View Article and Find Full Text PDF

Background: Vaccine protection against severe acute respiratory syndrome coronavirus 2 infection reduces gradually over time, requiring administration of updated boosters. However, long-term immune response following up to the sixth dose of the messenger RNA vaccine has not been well studied.

Case Presentation: We longitudinally determined anti-spike protein immunoglobulin G antibody levels in a 69-year-old Japanese man 76 times (first to sixth dose) to investigate their dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!