A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensitive Thermography via Sensing Visible Photons Detected from the Manipulation of the Trap State in MAPbX. | LitMetric

Sensitive thermometry or thermography by responding to blackbody radiation is urgently desired in the intelligent information life, including scientific research, medical diagnosis, remote sensing, defense, etc. Even though thermography techniques based on infrared sensing have undergone unprecedented development, the poor compatibility with common optical components and the high diffraction limit impose an impediment to their integration into the established photonic integrated circuit or the realization of high-spatial-resolution and high-thermal-resolution imaging. In this work, we present a sensitive temperature-dependent visible photon detection in Bi-doped MAPbX (X = Cl, Br, and I) and employ it for uncooled thermography. Systematic measurements reveal that the Bi dopant introduces trap states in MAPbX, thermal energy facilitates the carriers jumping from trap states to the conduction band, while the vacancies of trap states ensure the sequential absorption of visible photons with energy less than the band gap. Subsequently, the change of response toward the visible photon is applied to construct the thermograph, and it possesses a specific sensitivity of 2.11% K along temperature variation. As a result, our thermograph presents a temperature resolution of 0.21 nA K, a high responsivity of 2.06 mA W, and a high detectivity of 2.08 × 10 Jones at room temperature. Furthermore, remote thermal imaging is successfully achieved with our thermograph.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c13305DOI Listing

Publication Analysis

Top Keywords

trap states
12
visible photons
8
visible photon
8
sensitive thermography
4
thermography sensing
4
visible
4
sensing visible
4
photons detected
4
detected manipulation
4
trap
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!