A novel plate-to-plate dielectric barrier discharge microreactor (micro DBD) has been demonstrated in CO splitting. In this design, the ground electrode has a cooling microchannel to maintain the electrode temperature in the 263-298 K range during plasma operation. A small gap size between the electrodes of 0.50 mm allowed efficient heat transfer from the surrounding plasma to the ground electrode surface to compensate for heat released in the reaction zone and maintain a constant temperature. The effect of temperature on CO conversion and energy efficiency was studied at a voltage of 6-9 kV, a frequency of 60 kHz and a constant CO flow rate of 20 ml min. The CO decomposition rate first increased and then decreased as the electrode temperature decreased from 298 to 263 K with a maximum rate observed at 273 K. Operation at lower temperatures enhanced the vibrational dissociation of the CO molecule as opposed to electronic excitation which is the main mechanism at room temperature in conventional DBD reactors, however it also reduced the rate of elementary reaction steps. The counterplay between these two effects leads to a maximum in the reaction rate. The power consumption monotonously increased as the temperature decreased. The effective capacitance of the reactor increased by 1.5 times at 263 K as compared to that at 298 K changing the electric field distribution inside the plasma zone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443439PMC
http://dx.doi.org/10.1039/d3re00113jDOI Listing

Publication Analysis

Top Keywords

ground electrode
8
electrode temperature
8
temperature decreased
8
temperature
7
rate
6
temperature splitting
4
splitting rate
4
rate dbd
4
dbd microreactor
4
microreactor novel
4

Similar Publications

Employing density functional theory for ground state quantum mechanical calculations and the non-equilibrium Green's function method for transport calculations, we investigate the potential of CdS, ZnS, CdZnS, and ZnCdS as tunnel barriers in magnetic tunnel junctions for spintronics. Based on the finding that the valence band edges of these semiconductors are dominated by p orbitals and the conduction band edges by s orbitals, we show that symmetry filtering of the Bloch states in magnetic tunnel junctions with Fe electrodes results in high tunneling magnetoresistances and high spin-polarized current (up to two orders of magnitude higher than in the case of the Fe/MgO/Fe magnetic tunnel junction).

View Article and Find Full Text PDF

Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.

View Article and Find Full Text PDF

This article presents the results of experimental studies on the influence of the geometry of high-voltage plasma actuator electrodes on the change in flow in the boundary layer and their influence on the change in the lift coefficient. The plasma actuator used in the described experimental studies has a completely different structure. The experimental model of the plasma actuator uses a large mesh ground electrode and different geometries of the high-voltage electrodes, namely copper solid electrodes and mesh electrodes (the use of mesh electrodes, large GND and HV is a new solution).

View Article and Find Full Text PDF

Triboelectric separation, a solvent-free method, was investigated as a tool for protein enrichment in wheat flour. Gluten-starch model mixtures, flour, and reground flour fractions were evaluated for their separation characteristics (selectivity and efficiency). Mass yield, protein content, particle size distribution, and SEM analysis were used to assess performance.

View Article and Find Full Text PDF

Background: Electroencephalogram (EEG) biomarkers with adequate sensitivity and specificity to reflect the brain's health status can become indispensable for health monitoring during prolonged missions in space. The objective of our study was to assess whether the basic features of the posterior dominant rhythm (PDR) change under microgravity conditions compared to earth-based scalp EEG recordings.

Methods: Three crew members during the 16-day AXIOM-1 mission to the International Space Station (ISS), underwent scalp EEG recordings before, during, and after the mission by means of a dry-electrode self-donning headgear designed to support long-term EEG recordings in space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!