CROSS-SAMPLING RATE TRANSFER LEARNING FOR ENHANCED RAW EEG DEEP LEARNING CLASSIFIER PERFORMANCE IN MAJOR DEPRESSIVE DISORDER DIAGNOSIS.

bioRxiv

Tri-institutional Center for Translational Research in Neuroimaging and Data Science at Georgia State University, Emory University, and Georgia Institute of Technology.

Published: November 2023

Transfer learning offers a route for developing robust deep learning models on small raw electroencephalography (EEG) datasets. Nevertheless, the utility of applying representations learned from large datasets with a lower sampling rate to smaller datasets with higher sampling rates remains relatively unexplored. In this study, we transfer representations learned by a convolutional neural network on a large, publicly available sleep dataset with a 100 Hertz sampling rate to a major depressive disorder (MDD) diagnosis task at a sampling rate of 200 Hertz. Importantly, we find that the early convolutional layers contain representations that are generalizable across tasks. Moreover, our approach significantly increases mean model accuracy from 82.33% to 86.99%, increases the model's use of lower frequencies, (θ-band), and increases its robustness to channel loss. We expect this analysis to provide useful guidance and enable more widespread use of transfer learning in EEG deep learning studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680672PMC
http://dx.doi.org/10.1101/2023.11.13.566915DOI Listing

Publication Analysis

Top Keywords

transfer learning
12
deep learning
12
sampling rate
12
eeg deep
8
major depressive
8
depressive disorder
8
representations learned
8
learning
6
cross-sampling rate
4
transfer
4

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.

Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

Multi-class Classification of Retinal Eye Diseases from Ophthalmoscopy Images Using Transfer Learning-Based Vision Transformers.

J Imaging Inform Med

January 2025

College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.

This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!