Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its "range expansion" rate. One factor that limits the range expansion rate is vertical growth; at the biofilm edge there is a direct trade-off between horizontal and vertical growth-the more a biofilm grows up, the less it can grow out. Thus, the balance of horizontal and vertical growth impacts the range expansion rate and, crucially, the overall biofilm growth rate. However, the biophysical connection between horizontal and vertical growth remains poorly understood, due in large part to difficulty in resolving biofilm shape with sufficient spatial and temporal resolution from small length scales to macroscopic sizes. Here, we experimentally show that the horizontal expansion rate of bacterial colonies is controlled by the contact angle at the biofilm edge. Using white light interferometry, we measure the three-dimensional surface morphology of growing colonies, and find that small colonies are surprisingly well-described as spherical caps. At later times, nutrient diffusion and uptake prevent the tall colony center from growing exponentially. However, the colony edge always has a region short enough to grow exponentially; the size and shape of this region, characterized by its contact angle, along with cellular doubling time, determines the range expansion rate. We found that the geometry of the exponentially growing biofilm edge is well-described as a spherical-cap-napkin-ring, i.e., a spherical cap with a cylindrical hole in its center (where the biofilm is too tall to grow exponentially). We derive an exact expression for the spherical-cap-napkin-ring-based range expansion rate; further, to first order, the expansion rate only depends on the colony contact angle, the thickness of the exponentially growing region, and the cellular doubling time. We experimentally validate both of these expressions. In line with our theoretical predictions, we find that biofilms with long cellular doubling times and small contact angles do in fact grow faster than biofilms with short cellular doubling times and large contact angles. Accordingly, sensitivity analysis shows that biofilm growth rates are more sensitive to their contact angles than to their cellular growth rates. Thus, to understand the fitness of a growing biofilm, one must account for its shape, not just its cellular doubling time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680802 | PMC |
http://dx.doi.org/10.1101/2023.11.17.567592 | DOI Listing |
Background: Maintenance hemodialysis (MHD) is an effective treatment for patients with end-stage renal disease. Although MHD can prolong the survival of patients, their quality of life is lower and the fatality rate is higher. This work analyzed the factors related to the autogenous arteriovenous fistula (AVF)-like expansion of non-diabetic MHD patients by vascular ultrasound (VUS).
View Article and Find Full Text PDFEur J Popul
January 2025
School of Social Sciences, University of Iceland, Reykjavík, Iceland.
In 2021, during the height of the COVID-19 pandemic, the Total Fertility Rate in Iceland rose unexpectedly from 1.79 to 1.90.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, University of Crete, 700 13 Heraklion, Crete, Greece.
During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.
View Article and Find Full Text PDFJMIR Public Health Surveill
January 2025
Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, 420 E. Superior, Chicago, US.
Background: This study updates the COVID-19 pandemic surveillance in East Asia and the Pacific we first conducted in 2020 with two additional years of data for the region.
Objective: First, we measure whether there was an expansion or contraction of the pandemic in East Asia and the Pacific region when the World Health Organization (WHO) declared the end of the COVID-19 public health emergency of international concern on May 5, 2023. Second, we use dynamic and genomic surveillance methods to describe the dynamic history of the pandemic in the region and situate the window of the WHO declaration within the broader history.
Korean J Neurotrauma
December 2024
Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Objective: This randomized controlled trial (RCT) aimed to compare the short-, mid-, and long-term outcomes in patients with malignant intracranial hypertension undergoing either decompressive craniectomy (DC) or hinge craniotomy (HC).
Methods: In this prospective RCT, 38 patients diagnosed with malignant intracranial hypertension due to ischemic infarction, traumatic brain injury, or non-lesional spontaneous intracerebral hemorrhage, who required cranial decompression, were randomly allocated to the DC and HC groups.
Results: The need for reoperation, particularly cranioplasty, in the DC group was significantly different from that in the HC group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!