Meiotic drive, postzygotic isolation, and the Snowball Effect.

bioRxiv

Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045.

Published: November 2023

As populations diverge, they accumulate incompatibilities which reduce gene flow and facilitate the formation of new species. Simple models suggest that the genes that cause Dobzhansky-Muller incompatibilities should accumulate at least as fast as the square of the number of substitutions between taxa, the so-called snowball effect. We show, however, that in the special- but possibly common- case in which hybrid sterility is due primarily to cryptic meiotic (gametic) drive, the number of genes that cause postzygotic isolation may increase nearly linearly with the number of substitutions between species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680770PMC
http://dx.doi.org/10.1101/2023.11.14.567107DOI Listing

Publication Analysis

Top Keywords

postzygotic isolation
8
number substitutions
8
meiotic drive
4
drive postzygotic
4
isolation snowball
4
snowball populations
4
populations diverge
4
diverge accumulate
4
accumulate incompatibilities
4
incompatibilities reduce
4

Similar Publications

A history of studies of reproductive isolation between and .

Fly (Austin)

December 2025

Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK.

and are a sister species pair that have been used as a model for studies of reproductive isolation and speciation for almost 100 years owing to their close evolutionary history, well characterized genetic differences, and overlapping geographic distribution. There are extensive analyses of both pre- and post-zygotic isolation, including studies of courtship divergence, conspecific sperm precedence (CSP) and how reinforcement by natural selection may or may not act to strengthen isolation in sympatry. Post-zygotic analyses explore the underlying mechanics of reproductive isolation; how inversions may give rise to initial speciation events and misexpression of key genes typically found within inversion regions render hybrid offspring unfit or inviable.

View Article and Find Full Text PDF

The evolution of placentation is predicted to intensify intergenomic conflicts between mothers and offspring over optimal levels of maternal investment by providing offspring opportunities to manipulate mothers into allocating more resources. Parent-offspring conflicts can result in the evolution of reproductive isolation among populations when conflicts resolve in different ways. Postzygotic reproductive isolation is hypothesized to evolve more rapidly following the evolution of placentation due to the predicted increase in conflict.

View Article and Find Full Text PDF

Comparative studies of reproductive biology and formation of reproductive isolation need appropriate model systems, such as groups of related species. The amphipods (Crustacea: Amphipoda) of ancient Lake Baikal are an attractive group for such works, as they consist of several hundred species that radiated within the lake and have very different levels of intraspecific genetic diversity and reproduction timing. We have previously shown that one of the most widely distributed and best studied littoral species, Eulimnogammarus verrucosus (Gersfeldt, 1858), comprises cryptic species exhibiting a post-zygotic reproductive barrier.

View Article and Find Full Text PDF

Two major-effect loci influence interspecific mating in females of the sibling species, Drosophila simulans and D. sechellia.

G3 (Bethesda)

November 2024

Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, University of Oxford, Mansfield Road, Oxford OX1-3SR, UK.

Secondary contact between incompletely isolated species can produce a wide variety of outcomes. The vinegar flies Drosophila simulans and D. sechellia diverged on islands in the Indian Ocean and are currently separated by partial pre- and postzygotic barriers.

View Article and Find Full Text PDF
Article Synopsis
  • Isolation mechanisms in the Anopheles gambiae complex, important malaria vectors, include both pre-zygotic barriers reducing gene flow and post-zygotic issues like sterility in hybrid males and decreased fertility in hybrid females.
  • Genetic studies have revealed that hybrid incompatibility is largely influenced by interactions on the X chromosome, while also noting differences in the fertility of hybrid males based on the direction of the cross.
  • A study exploring the roles of mitochondrial DNA in hybrid incompatibilities found that switching mitochondrial DNA between species did not improve hybrid male fertility, suggesting it may not significantly contribute to these incompatibilities.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!