Obesity-linked fatty liver is a significant risk factor for hepatocellular carcinoma (HCC); however, the molecular mechanisms underlying the transition from non-alcoholic fatty liver disease (NAFLD) to HCC remains unclear. The present study explores the role of the endoplasmic reticulum (ER)-associated protein NgBR, an essential component of the cis-prenyltransferases (cis-PTase) enzyme, in chronic liver disease. Here we show that genetic depletion of NgBR in hepatocytes of mice (N-LKO) intensifies triacylglycerol (TAG) accumulation, inflammatory responses, ER/oxidative stress, and liver fibrosis, ultimately resulting in HCC development with 100% penetrance after four months on a high-fat diet. Comprehensive genomic and single cell transcriptomic atlas from affected livers provides a detailed molecular analysis of the transition from liver pathophysiology to HCC development. Importantly, pharmacological inhibition of diacylglycerol acyltransferase-2 (DGAT2), a key enzyme in hepatic TAG synthesis, abrogates diet-induced liver damage and HCC burden in N-LKO mice. Overall, our findings establish NgBR/cis-PTase as a critical suppressor of NAFLD-HCC conversion and suggests that DGAT2 inhibition may serve as a promising therapeutic approach to delay HCC formation in patients with advanced non-alcoholic steatohepatitis (NASH).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680637PMC
http://dx.doi.org/10.1101/2023.11.13.566870DOI Listing

Publication Analysis

Top Keywords

fatty liver
12
liver disease
12
liver
8
hepatocellular carcinoma
8
hcc development
8
hcc
6
loss cis-ptase
4
cis-ptase function
4
function liver
4
liver promotes
4

Similar Publications

Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease worldwide, with no universally recognized effective treatments currently available. In recent years, ginseng and its principal active components, such as ginsenosides, have shown potential protective effects in the treatment of these liver diseases. In NAFLD, studies have demonstrated that ginseng can improve hepatic lipid metabolism, reduce inflammatory responses, and inhibit oxidative stress and fibrosis, thereby attenuating the progression of NAFLD.

View Article and Find Full Text PDF

Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.

View Article and Find Full Text PDF

Background/objectives: Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high fat (HF) fed LFABP knockout (LFABP ) mice developed higher fat mass than their wild-type (WT) counterparts but displayed a metabolically healthy obese (MHO) phenotype with normoglycemia, normoinsulinemia, and reduced hepatic steatosis compared with WT. LFABP is expressed in both liver and intestine, thus in the present study, LFABP conditional knockout (cKO) mice were generated to determine the contributions of LFABP specifically within the liver or the intestine to the whole body phenotype of the global knockout.

View Article and Find Full Text PDF

Flaxseed and olive oil effectively treat numerous diseases and health conditions, particularly metabolic disorders. Traditional medicine has used both oils for managing cardiovascular disease, diabetes, gastrointestinal dysfunctions, metabolic-dysfunction-associated fatty liver disease (MAFLD), obesity, and more. This review explores the bioactive and polyphenolic compounds in flaxseed and olive oils that provide anti-inflammatory, antioxidant, anti-microbial, hepatoprotective, cardioprotective, antidiabetic, and gastroprotective benefits.

View Article and Find Full Text PDF

Curcumin, as an antioxidant agent, has been proposed as a potential treatment for nonalcoholic fatty liver disease (NAFLD). The aim of the current systematic review and meta-analysis was to summarize earlier findings regarding the effect of curcumin supplementation on liver enzymes and ALP in NAFLD patients. All studies published up to November 18, 2022, were searched through the PubMed, SCOPUS, and Web of Science databases to collect all randomized clinical trials (RCTs) on NAFLD patients in which curcumin was used as a treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!