Objectives: To develop, validate and implement algorithms to identify diabetic retinopathy (DR) cases and controls from electronic health care records (EHR)s. : We developed and validated EHR-based algorithms to identify DR cases and individuals with type I or II diabetes without DR (controls) in three independent EHR systems: Vanderbilt University Medical Center Synthetic Derivative (VUMC), the VA Northeast Ohio Healthcare System (VANEOHS), and Massachusetts General Brigham (MGB). Cases were required to meet one of three criteria: 1) two or more dates with any DR ICD-9/10 code documented in the EHR, or 2) at least one affirmative health-factor or EPIC code for DR along with an ICD9/10 code for DR on a different day, or 3) at least one ICD-9/10 code for any DR occurring within 24 hours of an ophthalmology exam. Criteria for controls included affirmative evidence for diabetes as well as an ophthalmology exam.

Results: The algorithms, developed and evaluated in VUMC through manual chart review, resulted in a positive predictive value (PPV) of 0.93 for cases and negative predictive value (NPV) of 0.97 for controls. Implementation of algorithms yielded similar metrics in VANEOHS (PPV=0.94; NPV=0.86) and lower in MGB (PPV=0.84; NPV=0.76). In comparison, use of DR definition as implemented in Phenome-wide association study (PheWAS) in VUMC, yielded similar PPV (0.92) but substantially reduced NPV (0.48). Implementation of the algorithms to the Million Veteran Program identified over 62,000 DR cases with genetic data including 14,549 African Americans and 6,209 Hispanics with DR.

Conclusions/discussion: We demonstrate the robustness of the algorithms at three separate health-care centers, with a minimum PPV of 0.84 and substantially improved NPV than existing high-throughput methods. We strongly encourage independent validation and incorporation of features unique to each EHR to enhance algorithm performance for DR cases and controls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680882PMC
http://dx.doi.org/10.1101/2023.11.10.23298311DOI Listing

Publication Analysis

Top Keywords

algorithms identify
12
electronic health
8
diabetic retinopathy
8
cases controls
8
icd-9/10 code
8
implementation algorithms
8
algorithms
7
cases
6
controls
5
development portable
4

Similar Publications

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

Objective: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.

Study Design: Prospective, double-blinded, observational study of fall risk scores between trained observers and those of IMU-HAs.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Semantical text understanding holds significant importance in natural language processing (NLP). Numerous datasets, such as Quora Question Pairs (QQP), have been devised for this purpose. In our previous study, we developed a Siamese Convolutional Neural Network (S-CNN) that achieved an F1 score of 82.

View Article and Find Full Text PDF

The advantages of lexicon-based sentiment analysis in an age of machine learning.

PLoS One

January 2025

Department of Political Science, Middlebury College, Middlebury, Vermont, United States of America.

Assessing whether texts are positive or negative-sentiment analysis-has wide-ranging applications across many disciplines. Automated approaches make it possible to code near unlimited quantities of texts rapidly, replicably, and with high accuracy. Compared to machine learning and large language model (LLM) approaches, lexicon-based methods may sacrifice some in performance, but in exchange they provide generalizability and domain independence, while crucially offering the possibility of identifying gradations in sentiment.

View Article and Find Full Text PDF

Background: Cardiac magnetic resonance (CMR) is essential for diagnosing cardiomyopathy, serving as the gold standard for assessing heart chamber volumes and tissue characterization. Hemodynamic forces (HDF) analysis, a novel approach using standard cine CMR images, estimates energy exchange between the left ventricular (LV) wall and blood. While prior research has focused on peak or mean longitudinal HDF values, this study aims to investigate whether unsupervised clustering of HDF curves can identify clinically significant patterns and stratify cardiovascular risk in non-ischemic LV cardiomyopathy (NILVC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!