Background: Friedreich's ataxia (FA) is an inherited neurodegenerative disorder that causes progressive nervous system damage resulting in impaired muscle coordination. FA is the most common autosomal recessive form of ataxia and is caused by an expansion of the DNA triplet guanine-adenine-adenine (GAA) in the first intron of the Frataxin gene (FXN), located on chromosome 9q13. In the unaffected population, the number of GAA repeats ranges from 6 to 27 repetitions. In FA patients, GAA repeat expansions range from 44 to 1,700 repeats which decreases frataxin protein expression. Frataxin is a mitochondrial protein essential for various cellular functions, including iron metabolism. Reduced frataxin expression is thought to negatively affect mitochondrial iron metabolism, leading to increased oxidative damage. Although FA is considered a neurodegenerative disorder, FA patients display heart disease that includes hypertrophy, heart failure, arrhythmias, conduction abnormalities, and cardiac fibrosis.
Objective: In this work, we investigated whether abnormal Ca handling machinery is the molecular mechanism that perpetuates cardiac dysfunction in FA.
Methods: We used the frataxin knock-out (FXN-KO) mouse model of FA as well as human heart samples from donors with FA and from unaffected donors. ECG and echocardiography were used to assess cardiac function in the mice. Expression of calcium handling machinery proteins was assessed with proteomics and western blot. In left ventricular myocytes from FXN-KO and FXN-WT mice, the IonOptix system was used for calcium imaging, the seahorse assay was utilized to measure oxygen consumption rate (OCR), and confocal imaging was used to quantify the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS).
Results: We found that major contractile proteins, including SERCA2a and Ryr2, were downregulated in human left ventricular samples from deceased donors with FA compared to unaffected donors, similar to the downregulation of these proteins in the left ventricular tissue from FXN-KO compared to FXN-WT. On the ECG, the RR, PR, QRS, and QTc were significantly longer in the FXN-KO mice compared to FXN-WT. The ejection fraction and fractional shortening were significantly decreased and left ventricular wall thickness and diameter were significantly increased in the FXN-KO mice versus FXN-WT. The mitochondrial membrane potential Δψm was depolarized, ROS levels were elevated, and OCR was decreased in ventricular myocytes from FXN-KO versus FXN-WT.
Conclusion: The development of left ventricular contractile dysfunction in FA is associated with reduced expression of calcium handling proteins and mitochondrial dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680642 | PMC |
http://dx.doi.org/10.1101/2023.11.09.566141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!