Integration of molecular catalysts inside polymeric scaffolds has gained substantial attention over the past decade, as it provides a path towards generating systems with enhanced stability as well as enzyme-like morphologies and properties. In the context of solar fuels research and chemical energy conversion, this approach has been found to improve both rates and energy efficiencies of a range of catalytic reactions. However, system performance still needs to be improved to reach technologically relevant currents and stability, parameters that are heavily influenced by the nature of the incorporated molecular catalyst. Here, we have focused on the integration of a biomimetic {Fe(μ-adt)(CO)} (-CHNHCHS-, azadithiolate or adt) based active site ("[2Fe2S]"), inspired by the catalytic cofactor of [FeFe] hydrogenases, within a synthetic polymeric scaffold using free radical polymerization. The resulting metallopolymers [2Fe2S][DMAEMA][PyBMA] (DMAEMA = dimethylaminoethyl methacrylate as water soluble monomer; PyBMA = 4-(pyren-1-yl)-butyl methacrylate as hydrophobic anchor for heterogenization) were found to be active for electrochemical H production in neutral aqueous media. The pyrene content was varied to optimize durability and activity. Following immobilization on multiwalled carbon nanotubes (MWNT) the most active metallopolymer, containing ∼2.3 mol% of PyBMA, could reach a turnover number for hydrogen production (TON) of ∼0.4 ×10 over 20 hours of electrolysis at an overpotential of 0.49 V, two orders of magnitude higher than the isolated catalyst counterpart. The study provides a synthetic methodology for incorporating catalytic units featuring second coordination sphere functional groups, and highlights the benefit of the confinement within the polymer matrix for catalytic performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521030 | PMC |
http://dx.doi.org/10.1039/d3se00409k | DOI Listing |
Proteins
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, and Anopheles stephensi.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Belgachia, Kolkata, West Bengal, India.
The study was conducted to detect the occurrence and phenotypic resistance pattern of ESBL-producing Enterobacteriaceae in livestock using docking based analysis to reveal the classes of antibiotics against which ESBL-producers are active. Rectal swabs from healthy cattle (n=100), goats (n=88), pigs (n=66) were collected from backyard farms in Andaman and Nicober island (India). In total, 304 isolates comprising E.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.
The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.
View Article and Find Full Text PDFBiochimie
January 2025
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov street, 32, Moscow, 119991, Russia.
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are involved in many cellular processes and possess unequalled catalytic versatility. Rational design through site-directed mutagenesis is a powerful strategy for creating tailor-made enzymes for a wide range of biocatalytic applications. PLP-dependent methionine γ-lyase (MGL), which degrades sulfur-containing amino acids, is an encouraging enzyme for many therapeutic purposes - from combating bacterial resistant strains and fungi to antitumor activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!