Cardiomyocyte apoptosis is an important factor in cardiac function decline observed in various cardiovascular diseases. To understand the progress in the field of cardiomyocyte apoptosis research, this paper uses bibliometrics to statistically analyze publications in this field. A total of 5939 articles were retrieved from the core Web of Science database, and then VOSviewer and Citespace were used to conduct a scientometric analysis of the authors, countries, institutions, references and keywords included in the articles to determine the cooperative relationships between researchers that study cardiomyocyte apoptosis. At present, the research hotspots in this field mainly include experimental research, molecular mechanisms, pathophysiology and cardiac regeneration of cardiomyocyte apoptosis-related diseases. NOD-like receptor thermal protein domain associated protein 3 inflammasome, circular RNA, and sepsis are the research frontiers in this field and are emerging as new areas of research focus. This work provides insight into research directions and the clinical application value for the continued advancement of cardiomyocyte apoptosis research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681623PMC
http://dx.doi.org/10.1097/MD.0000000000035958DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte apoptosis
20
cardiomyocyte
6
apoptosis
5
bibliometric analysis
4
analysis cardiomyocyte
4
apoptosis 2014
4
2014 2023
4
2023 review
4
review cardiomyocyte
4
apoptosis factor
4

Similar Publications

Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.

Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

Cannabidiol Ameliorates Doxorubicin-Induced Myocardial Injury via Activating Hippo Pathway.

Drug Des Devel Ther

January 2025

School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, People's Republic of China.

Background: Doxorubicin (DOX) is a chemotherapeutic agent widely used for cancer treatment and has non-negligible cardiotoxicity. Some previous studies have reported that cannabidiol (CBD) has cardioprotective effects. In this study, we evaluated the protective effects of CBD against DOX-induced cardiomyocyte injury, and explored the downstream molecular mechanism.

View Article and Find Full Text PDF

In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.

View Article and Find Full Text PDF

Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription.

Funct Integr Genomics

January 2025

Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.

Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.

View Article and Find Full Text PDF

The global prevalence of heart failure is still growing, which imposes a heavy economic burden. The role of microRNA-146b (miR-146b) in HF remain largely unknown. This study aims to explore the role and mechanism of miR-146b in HF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!