Cardiomyocyte apoptosis is an important factor in cardiac function decline observed in various cardiovascular diseases. To understand the progress in the field of cardiomyocyte apoptosis research, this paper uses bibliometrics to statistically analyze publications in this field. A total of 5939 articles were retrieved from the core Web of Science database, and then VOSviewer and Citespace were used to conduct a scientometric analysis of the authors, countries, institutions, references and keywords included in the articles to determine the cooperative relationships between researchers that study cardiomyocyte apoptosis. At present, the research hotspots in this field mainly include experimental research, molecular mechanisms, pathophysiology and cardiac regeneration of cardiomyocyte apoptosis-related diseases. NOD-like receptor thermal protein domain associated protein 3 inflammasome, circular RNA, and sepsis are the research frontiers in this field and are emerging as new areas of research focus. This work provides insight into research directions and the clinical application value for the continued advancement of cardiomyocyte apoptosis research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681623 | PMC |
http://dx.doi.org/10.1097/MD.0000000000035958 | DOI Listing |
PLoS One
January 2025
Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, PR China.
Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.
Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.
Drug Des Devel Ther
January 2025
School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, People's Republic of China.
Background: Doxorubicin (DOX) is a chemotherapeutic agent widely used for cancer treatment and has non-negligible cardiotoxicity. Some previous studies have reported that cannabidiol (CBD) has cardioprotective effects. In this study, we evaluated the protective effects of CBD against DOX-induced cardiomyocyte injury, and explored the downstream molecular mechanism.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.
Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.
View Article and Find Full Text PDFShock
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University; 151 Rd, Yan Jiang West, Guangzhou, 510120, China.
The global prevalence of heart failure is still growing, which imposes a heavy economic burden. The role of microRNA-146b (miR-146b) in HF remain largely unknown. This study aims to explore the role and mechanism of miR-146b in HF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!