Alginate hydrogel is highly efficient for water filtration due to its anti-fouling nature and formation of strong hydration membranes. However, poor mechanical properties of alginate hydrogel membrane limit its installation in water treatment. There is a need to enhance mechanical properties of alginate hydrogel membranes using eco-friendly, cost-effective materials and technologies. In this work, hydroentangled non-woven from cotton waste (comber noil) fibers was prepared. This non-woven was immersed in solution of sodium alginate (0.5 %, 1 %, 1.5 %) followed by dipping in calcium chloride solution which resulted in gel formation on and into cotton fibers. The successful formation of gel on non-woven fabric was confirmed through FTIR (Fourier transform infrared spectroscopy) and properties of this composite membrane were analyzed by SEM (Scanning electron microscopy), XRD (X-ray diffraction), DSC (Differential scanning calorimeter), water contact, water flux, oil-water filtration, air permeability, tensile strength, and porosity tests. The results showed that porosity of prepared hydrogel membranes decreased with increasing alginate concentration from 0.5 % to 1.5 % which resulted in decreased water permeation flux from 2655 h/m to 475 h/m. The prepared membrane has separation efficiencies for the oil-water mixture in the range of 97.5 % to 99.5 %. Moreover, the developed samples also showed significant antibacterial activity as well as improved mechanical properties. The strength of the prepared membrane is in the range of 40 N to 80 N. The developed sodium alginate hydrogel-based non-woven membrane could have potential applications for commercial water filtration systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128422DOI Listing

Publication Analysis

Top Keywords

alginate hydrogel
16
water filtration
12
mechanical properties
12
non-woven membrane
8
properties alginate
8
hydrogel membranes
8
sodium alginate
8
prepared membrane
8
alginate
7
water
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!