Background: Inflammatory response triggered by innate immunity plays a pivotal element in the progress of ischemic stroke. Receptor-interacting kinase 2 (RIP2) is implicated in maintaining immunity homeostasis and regulating inflammatory response. However, the underlying mechanism of RIP2 in ischemic stroke is still not well understood. Hence, the study investigated the role and the ubiquitination regulatory mechanism of RIP2 in ischemic stroke.

Methods: Focal cerebral ischemia was introduced by middle cerebral artery occlusion (MCAO) in wild-type (WT) and OTUD1-deficient (OTUD1) mice, oxygen glucose deprivation and reoxygenation (OGD/R) models in BV2 cells and primary cultured astrocytes were performed for monitoring of experimental stroke. GSK2983559 (GSK559), a RIP2 inhibitor was intraventricularly administered 30 min before MCAO. Mice brain tissues were collected for TTC staining and histopathology. Protein expression of RIP2, OTUD1, p-NF-κB-p65 and IκBα was determined by western blot. Localization of RIP2 and OTUD1 was examined by immunofluorescence. The change of IL-1β, IL-6 and TNF-α was detected by ELISA assay and quantitative real-time polymerase chain reaction. Immunoprecipitation and confocal microscopy were used to study the interaction of RIP2 and OTUD1. The activity of NF-κB was examined by dual-luciferase assay.

Results: Our results showed upregulated protein levels of RIP2 and OTUD1 in microglia and astrocytes in mice subjected to focal cerebral ischemia. Inhibition of RIP2 by GSK559 ameliorated the cerebral ischemic outcome by repressing the NF-κB activity and the inflammatory response. Mechanistically, OTUD1 interacted with RIP2 and sequentially removed the K63-linked polyubiquitin chains of RIP2, thereby inhibiting NF-κB activation. Furthermore, OTUD1 deficiency exacerbated cerebral ischemic injury in response to inflammation induced by RIP2 ubiquitination.

Conclusions: These findings suggested that RIP2 mediated cerebral ischemic lesion via stimulating inflammatory response, and OTUD1 ameliorated brain injury after ischemia through inhibiting RIP2-induced NF-κB activation by specifically cleaving K63-linked ubiquitination of RIP2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680203PMC
http://dx.doi.org/10.1186/s12974-023-02968-7DOI Listing

Publication Analysis

Top Keywords

cerebral ischemic
16
inflammatory response
16
rip2 otud1
16
rip2
15
otud1
9
ischemic injury
8
ischemic stroke
8
mechanism rip2
8
rip2 ischemic
8
focal cerebral
8

Similar Publications

Objective: This study investigated the effects of early treatment and pathophysiology on eosinophilic granulomatosis with polyangiitis neuropathy (EGPA-N).

Methods: Twenty-six consecutive patients with EGPA-N were diagnosed and treated within a day of admission and underwent clinical analysis. Peripheral nerve recovery rates were evaluated after early treatment by identifying the damaged peripheral nerve through detailed neurological findings.

View Article and Find Full Text PDF

We report a case of persistent consciousness disturbance due to non-convulsive status epilepticus (NCSE) following a successful mechanical thrombectomy (MT). A 98-year-old female with atrial fibrillation presented with impaired consciousness and right hemiparesis 6 hrs after her last known well state. Magnetic resonance angiography revealed occlusion of the left internal carotid artery, necessitating MT to achieve complete recanalisation.

View Article and Find Full Text PDF

Personalized prediction of stroke outcome using lesion imaging markers is still too imprecise to make a breakthrough in clinical practice. We performed a combined prediction and brain mapping study on topographic and connectomic lesion imaging data to evaluate (i) the relationship between lesion-deficit associations and their predictive value and (ii) the influence of time since stroke. In patients with first-ever ischaemic stroke, we first applied high-dimensional machine learning models on lesion topographies or structural disconnection data to model stroke severity (National Institutes of Health Stroke Scale 24 h/3 months) and functional outcome (modified Rankin Scale 3 months) in cross-validation.

View Article and Find Full Text PDF

The effect of thermoelectric craniocerebral cooling device on protecting brain functions in post-cardiac arrest syndrome.

Front Cardiovasc Med

January 2025

Department of Anesthesiology and Reanimation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye.

Aim: This study aimed to protect brain functions in patients who experienced in-hospital cardiac arrest through the application of local cerebral hypothermia. By utilizing a specialized thermal hypothermia device, this approach sought to mitigate ischemic brain injury associated with post-cardiac arrest syndrome, enhance survival rates, and improve neurological outcomes as measured by standardized scales.

Methods: A prospective, single-center cohort study was conducted involving patients aged ≥18 years who experienced in-hospital cardiac arrest and achieved return of spontaneous circulation (ROSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!