Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionakgq1jra83gie1b8uk9eoq4futlibrba): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Galaxy is a web-based open-source platform for scientific analyses. Researchers use thousands of high-quality tools and workflows for their respective analyses in Galaxy. Tool recommender system predicts a collection of tools that can be used to extend an analysis. In this work, a tool recommender system is developed by training a transformer on workflows available on Galaxy Europe and its performance is compared to other neural networks such as recurrent, convolutional and dense neural networks.
Results: The transformer neural network achieves two times faster convergence, has significantly lower model usage (model reconstruction and prediction) time and shows a better generalisation that goes beyond training workflows than the older tool recommender system created using RNN in Galaxy. In addition, the transformer also outperforms CNN and DNN on several key indicators. It achieves a faster convergence time, lower model usage time, and higher quality tool recommendations than CNN. Compared to DNN, it converges faster to a higher precision@k metric (approximately 0.98 by transformer compared to approximately 0.9 by DNN) and shows higher quality tool recommendations.
Conclusion: Our work shows a novel usage of transformers to recommend tools for extending scientific workflows. A more robust tool recommendation model, created using a transformer, having significantly lower usage time than RNN and CNN, higher precision@k than DNN, and higher quality tool recommendations than all three neural networks, will benefit researchers in creating scientifically significant workflows and exploratory data analysis in Galaxy. Additionally, the ability to train faster than all three neural networks imparts more scalability for training on larger datasets consisting of millions of tool sequences. Open-source scripts to create the recommendation model are available under MIT licence at https://github.com/anuprulez/galaxy_tool_recommendation_transformers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680333 | PMC |
http://dx.doi.org/10.1186/s12859-023-05573-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!