Herein, we report the design and synthesis of a library of 28 new 1,2,3-triazole derivatives bearing carboxylic acid and ester moieties as dual inhibitors of carbonic anhydrase (CA) and cathepsin B enzymes. The synthesised compounds were assayed in vitro for their inhibition potential against four human CA (hCA) isoforms, I, II, IX and XII. The carboxylic acid derivatives displayed low micromolar inhibition against hCA II, IX and XII in contrast to the ester derivatives. Most of the target compounds showed poor inhibition against the hCA I isoform. 4-Fluorophenyl appended carboxylic acid derivative 6c was found to be the most potent inhibitor of hCA IX and hCA XII with a K value of 0.7 μM for both the isoforms. The newly synthesised compounds showed dual inhibition towards CA as well as cathepsin B. The ester derivatives exhibited higher % inhibition at 10 M concentration as compared with the corresponding carboxylic acid derivatives against cathepsin B. The results from in silico studies of the target compounds with the active site of cathepsin B were found in good correlation with the in vitro results. Moreover, two compounds, 5i and 6c, showed cytotoxic activity against A549 lung cancer cells, with IC values lower than 100 μM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ardp.202300372 | DOI Listing |
PLoS One
January 2025
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
Background: Minimizing the duration of mechanical ventilation is one of the most important therapeutic goals during the care of preterm infants at neonatal intensive care units (NICUs). The rate of extubation failure among preterm infants is between 16% and 40% worldwide. Numerous studies have been conducted on the assessment of extubation suitability, the optimal choice of respiratory support around extubation, and the effectiveness of medical interventions.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany.
Target odorant detection in mixtures has been shown to become more difficult as the number of background odorants increases and falls below chance level in mixtures with 16 components. Our aim was to investigate target odorant detection in mixtures among healthy people and compare it between dysosmic patients and age- and gender-matched controls. Participants underwent extensive olfactory testing and performed two target odorant detection tasks.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Republic of Serbia.
Introduction: Chronic endoplasmic reticulum (ER) stress and increased apoptosis are involved in the pathogenesis of glycogen storage disease Ib (GSD Ib), whereas small molecule phenylbutyrate (4-PBA) showed the capability of reducing ER stress-induced apoptosis. The objective was to generate an in vitro system in which capability of small molecules (SMs) to influence ER stress and apoptosis could be screened at the expression level.
Methods: G6PT-deficient FlpInHEK293 cell line was created and validated using the CRISPR/Cas9 knockout method.
Acc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!