A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data. | LitMetric

Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data.

Environ Monit Assess

Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0001, South Africa.

Published: November 2023

Rangelands play a vital role in developing countries' biodiversity conservation and economic growth, since most people depend on rangelands for their livelihood. Aboveground-biomass (AGB) is an ecological indicator of the health and productivity of rangeland and provides an estimate of the amount of carbon stored in the vegetation. Thus, monitoring seasonal AGB is important for understanding and managing rangelands' status and resilience. This study assesses the impact of seasonal dynamics and fire on biophysical parameters using Sentinel-1 (S1) and Sentinel-2 (S2) image data in the mesic rangeland of Limpopo, South Africa. Six sites were selected (3/area), with homogenous vegetation (10 plots/site of 30m). The seasonal measurements of LAI and biomass were undertaken in the early summer (December 2020), winter (July-August 2021), and late summer (March 2022). Two regression approaches, random forest (RF) and stepwise multiple linear regression (SMLR), were used to estimate seasonal AGB. The results show a significant difference (p < 0.05) in AGB seasonal distribution and occurrence between the fire (ranging from 0.26 to 0.39 kg/m) and non-fire areas (0.24-0.35 kg/m). In addition, the seasonal predictive models derived from random forest regression (RF) are fit to predict disturbance and seasonal variations in mesic tropical rangelands. The S1 variables were excluded from all models due to high moisture content. Hence, this study analyzed the time series to evaluate the correlation between seasonal estimated and field AGB in mesic tropical rangelands. A significant correlation between backscattering, AGB and ecological parameters was observed. Therefore, using S1 and S2 data provides sufficient data to obtain the seasonal changes of biophysical parameters in mesic tropical rangelands after disturbance (fire) and enhanced assessments of critical phenology stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682297PMC
http://dx.doi.org/10.1007/s10661-023-12133-5DOI Listing

Publication Analysis

Top Keywords

mesic tropical
12
tropical rangelands
12
seasonal
10
sentinel-1 sentinel-2
8
agb ecological
8
seasonal agb
8
biophysical parameters
8
random forest
8
rangelands
6
agb
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!