A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of an early alert model for pandemic situations in Germany. | LitMetric

AI Article Synopsis

  • Using a combination of disease ontology, text mining, and statistical analysis, researchers compiled a list of COVID-19 symptoms to build a foundation for analysis.
  • By employing machine learning techniques on Google search and Twitter data, they created a long-short-term memory (LSTM) model that effectively predicted increases in confirmed cases and hospitalizations up to 14 days in advance, achieving high accuracy scores.

Article Abstract

The COVID-19 pandemic has pointed out the need for new technical approaches to increase the preparedness of healthcare systems. One important measure is to develop innovative early warning systems. Along those lines, we first compiled a corpus of relevant COVID-19 related symptoms with the help of a disease ontology, text mining and statistical analysis. Subsequently, we applied statistical and machine learning (ML) techniques to time series data of symptom related Google searches and tweets spanning the time period from March 2020 to June 2022. In conclusion, we found that a long-short-term memory (LSTM) jointly trained on COVID-19 symptoms related Google Trends and Twitter data was able to accurately forecast up-trends in classical surveillance data (confirmed cases and hospitalization rates) 14 days ahead. In both cases, F1 scores were above 98% and 97%, respectively, hence demonstrating the potential of using digital traces for building an early alert system for pandemics in Germany.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682010PMC
http://dx.doi.org/10.1038/s41598-023-48096-3DOI Listing

Publication Analysis

Top Keywords

early alert
8
covid-19 symptoms
8
development early
4
alert model
4
model pandemic
4
pandemic situations
4
situations germany
4
germany covid-19
4
covid-19 pandemic
4
pandemic pointed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!