Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antibodies are versatile proteins with both the capacity to bind a broad range of targets and a proven track record as some of the most successful therapeutics. However, the development of novel antibody therapeutics is a lengthy and costly process. It is challenging to predict the functional and biophysical properties of antibodies from their amino acid sequence alone, requiring numerous experiments for full characterization. Machine learning, specifically deep representation learning, has emerged as a family of methods that can complement wet lab approaches and accelerate the overall discovery and engineering process. Here, we review advances in antibody sequence representation learning, and how this has improved antibody structure prediction and facilitated antibody optimization. We discuss challenges in the development and implementation of such models, such as the lack of publicly available, well-curated antibody function data and highlight opportunities for improvement. These and future advances in machine learning for antibody sequences have the potential to increase the success rate in developing new therapeutics, resulting in broader access to transformative medicines and improved patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910360 | PMC |
http://dx.doi.org/10.1101/cshperspect.a041462 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!