Background: The indication for mechanical thrombectomy (MT) in stroke patients with large vessel occlusion has been constantly expanded over the past years. Despite remarkable treatment effects at the group level in clinical trials, many patients remain severely disabled even after successful recanalization. A better understanding of this outcome variability will help to improve clinical decision-making on MT in the acute stage. Here, we test whether current outcome models can be refined by integrating information on the preservation of the corticospinal tract as a functionally crucial white matter tract derived from acute perfusion imaging.

Methods: We retrospectively analyzed 162 patients with stroke and large vessel occlusion of the anterior circulation who were admitted to the University Medical Center Lübeck between 2014 and 2020 and underwent MT. The ischemic core was defined as fully automatized based on the acute computed tomography perfusion with cerebral blood volume data using outlier detection and clustering algorithms. Normative whole-brain structural connectivity data were used to infer whether the corticospinal tract was affected by the ischemic core or preserved. Ordinal logistic regression models were used to correlate this information with the modified Rankin Scale after 90 days.

Results: The preservation of the corticospinal tract was associated with a reduced risk of a worse functional outcome in large vessel occlusion-stroke patients undergoing MT, with an odds ratio of 0.28 (95% CI, 0.15-0.53). This association was still significant after adjusting for multiple confounding covariables, such as age, lesion load, initial symptom severity, sex, stroke side, and recanalization status.

Conclusions: A preinterventional computed tomography perfusion-based surrogate of corticospinal tract preservation or disconnectivity is strongly associated with functional outcomes after MT. If validated in independent samples this concept could serve as a novel tool to improve current outcome models to better understand intersubject variability after MT in large vessel occlusion stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.123.044221DOI Listing

Publication Analysis

Top Keywords

corticospinal tract
20
large vessel
16
vessel occlusion
12
acute perfusion
8
thrombectomy stroke
8
current outcome
8
outcome models
8
preservation corticospinal
8
ischemic core
8
computed tomography
8

Similar Publications

A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.

View Article and Find Full Text PDF

Introduction/objective: Biallelic expansion of the pentanucleotide AAGGG in the RFC1- gene is associated with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). This study aimed to comprehensively characterise this condition by conducting an in-depth neurophysiological examination of afflicted patients.

Methods: A retrospective analysis was conducted in 31 RFC1-positive patients.

View Article and Find Full Text PDF

Alterations in white matter microstructure in bipolar disorder patients with and without psychosis.

Prog Neuropsychopharmacol Biol Psychiatry

December 2024

Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China. Electronic address:

Objective: The overlap of affective disturbance and psychosis considerably makes it complex to determine the etiology of bipolar disorder (BD) and develop targeted interventions. The present study aimed to determine the white matter microstructural alterations that distinguish between BD with psychosis (BDP) and BD with no psychosis (BDNP) to identify patients who may specifically benefit from appropriately effective treatments.

Methods: Diffusion-weighted magnetic resonance images were acquired from 38 participants with BDP, 52 participants with BDNP and 70 healthy controls (HCs).

View Article and Find Full Text PDF

Personalized whole-brain activity patterns predict human corticospinal tract activation in real-time.

Brain Stimul

December 2024

Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA. Electronic address:

Background: Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are needed.

View Article and Find Full Text PDF

Automated White Matter Fiber Tract Segmentation for the Brainstem.

NMR Biomed

February 2025

Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.

This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!