Humans excel at predictively synchronizing their behavior with external rhythms, as in dance or music performance. The neural processes underlying rhythmic inferences are debated: whether predictive perception relies on high-level generative models or whether it can readily be implemented locally by hard-coded intrinsic oscillators synchronizing to rhythmic input remains unclear and different underlying computational mechanisms have been proposed. Here we explore human perception for tone sequences with some temporal regularity at varying rates, but with considerable variability. Next, using a dynamical systems perspective, we successfully model the participants behavior using an adaptive frequency oscillator which adjusts its spontaneous frequency based on the rate of stimuli. This model better reflects human behavior than a canonical nonlinear oscillator and a predictive ramping model-both widely used for temporal estimation and prediction-and demonstrate that the classical distinction between absolute and relative computational mechanisms can be unified under this framework. In addition, we show that neural oscillators may constitute hard-coded physiological priors-in a Bayesian sense-that reduce temporal uncertainty and facilitate the predictive processing of noisy rhythms. Together, the results show that adaptive oscillators provide an elegant and biologically plausible means to subserve rhythmic inference, reconciling previously incompatible frameworks for temporal inferential processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703266 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1011669 | DOI Listing |
Biochim Biophys Acta Bioenerg
January 2025
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy. Electronic address:
Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression.
View Article and Find Full Text PDFAccid Anal Prev
January 2025
School of Transportation, Southeast University, Nanjing, Jiangsu Province 211189, PR China; Institute on Internet of Mobility, Southeast University and University of Wisconsin-Madison, Southeast University, Nanjing, Jiangsu Province 211189, PR China.
Traffic signals, while reducing conflicts within intersections, often lead to stop-and-go behaviors in approaching vehicles, negatively impacting traffic flow in terms of safety, efficiency, and fuel consumption. Aimed at minimizing the traffic oscillations caused by traffic signals through Connected and Autonomous Vehicles (CAVs) and meeting real-time operational needs, this paper proposes a Risk-Based Adaptive Cruise Control (RACC). RACC designs the constraints of approaching a signalized intersection as expected risks, enabling compliance with all constraints while being adaptable to basic road scenarios.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Nantes Université, École Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR 6004, Nantes F-44000, France.
Dissipative environments are ubiquitous in nature, from microscopic swimmers in low-Reynolds-number fluids to macroscopic animals in frictional media. In this study, we consider a mathematical model of a slender elastic locomotor with an internal rhythmic neural pattern generator to examine various undulatory locomotion such as swimming and crawling behaviours. By using local mechanical load as mechanosensory feedback, we have found that undulatory locomotion robustly emerges in different rheological media.
View Article and Find Full Text PDFWe detail here the general principle of a self-adaptive oscillator in which the intertwined operation of a 100-m-long active optical resonator and a standard semiconductor laser mutually coupled by stimulated Brillouin scattering offers an ultimate high spectral purity. Single frequency operation of this self-adaptive photonic oscillator is achieved without any servo locking or stabilization electronics. In free running operation, this principle leads to a Lorentzian linewidth of 40 mHz and a Flicker noise linewidth of 200 Hz for 0.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Care Ethics, University of Humanistic Studies, Utrecht, The Netherlands.
Background: People with the chronic disease Multiple Sclerosis are subjected to different degrees of profound uncertainty. Uncertainty has been linked to adverse psychological effects such as feelings of heightened vulnerability, avoidance of decision-making, fear, worry, anxiety disorders, and even depression. Research into Multiple Sclerosis has a predominant focus on the scientific, practical, and psychosocial issues of uncertainty.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!