Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Absolute quantification of biological samples provides precise numerical expression levels, enhancing accuracy, and performance for rare templates. Current methodologies, however, face challenges-flow cytometers are costly and complex, whereas fluorescence imaging, relying on software or manual counting, is time-consuming and error-prone. It is presented that Deep-qGFP, a deep learning-aided pipeline for the automated detection and classification of green fluorescent protein (GFP) labeled microreactors, enables real-time absolute quantification. This approach achieves an accuracy of 96.23% and accurately measures the sizes and occupancy status of microreactors using standard laboratory fluorescence microscopes, providing precise template concentrations. Deep-qGFP demonstrates remarkable speed, quantifying over 2000 microreactors across ten images in just 2.5 seconds, with a dynamic range of 56.52-1569.43 copies µL . The method demonstrates impressive generalization capabilities, successfully applied to various GFP-labeling scenarios, including droplet-based, microwell-based, and agarose-based applications. Notably, Deep-qGFP is the first all-in-one image analysis algorithm successfully implemented in droplet digital polymerase chain reaction (PCR), microwell digital PCR, droplet single-cell sequencing, agarose digital PCR, and bacterial quantification, without requiring transfer learning, modifications, or retraining. This makes Deep-qGFP readily applicable in biomedical laboratories and holds potential for broader clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202301293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!