With the extensive attention of DNA hydrogels in biomedicine, biomaterial, and other research fields, more and more functional DNA hydrogels have emerged to match the various needs. Incorporating nanomaterials into the hydrogel network is an emerging strategy for functional DNA hydrogel construction. Surprisingly, nanomaterials-based DNA hydrogels can be engineered to possess favorable properties, such as dynamic mechanical properties, excellent optical properties, particular electrical properties, perfect encapsulation properties, improved magnetic properties, and enhanced antibacterial properties. Herein, the preparation strategies of nanomaterials-based DNA hydrogels are first highlighted and then different nanomaterial designs are used to demonstrate the functional regulation of DNA hydrogels to achieve specific properties. Subsequently, representative applications in biosensing, drug delivery, cell culture, and environmental protection are introduced with some selected examples. Finally, the current challenges and prospects are elaborated. The study envisions that this review will provide an insightful perspective for the further development of functional DNA hydrogels.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202301261DOI Listing

Publication Analysis

Top Keywords

dna hydrogels
28
nanomaterials-based dna
12
functional dna
12
preparation strategies
8
functional regulation
8
dna
8
properties
8
hydrogels
7
functional
5
strategies functional
4

Similar Publications

Measuring XNA polymerase fidelity in a hydrogel particle format.

Nucleic Acids Res

January 2025

Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.

Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.

View Article and Find Full Text PDF

Integrating Metal-Organic Framework Hybrid into Nucleic Acid-Based Hydrogel for Highly Selective Recognition and Sensitive Detection of Sarafloxacin.

Anal Chem

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi 214122, China.

Metal-organic framework-based hybrids (MOFzyme) have promising applications in colorimetric aptasensors due to their highly efficient and stable catalytic activity. However, their efficient application in biosensors remains a challenging issue due to the limited reaction site and amorphous structure. Herein, we encapsulated catalase inside MOF cavities to prepare an MOFzyme with many functional groups on its surface, and the functional groups were utilized for the subsequent integration of MOFzyme into the hyaluronic acid-DNA hydrogel.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Giant unilamellar vesicles (GUVs) are versatile cell models in biomedical and environmental research. Of the various GUV production methods, hydrogel-assisted GUV production is most easily implemented in a typical biological laboratory. To date, agarose, polyvinyl alcohol, cross-linked dextran-PEG, polyacrylamide, and starch hydrogels have been used to produce GUVs.

View Article and Find Full Text PDF

GelMA Hydrogels Integrated With aptamer CH6-Functionalized Tetrahedral DNA Nanostructures for Osteoporotic Mandibular Regeneration.

Macromol Biosci

January 2025

Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.

Osteoporotic bone regeneration is challenging due to impaired bone formation. Tetrahedral DNA nanostructures (TDN), promising nucleic acid nanomaterials, have garnered attention for their potential in osteoporotic mandibular regeneration owing to their ability to enhance cellular activity and promote osteogenic differentiation. Osteoblasts play a critical role in bone regeneration; however, intracellular delivery of TDN into osteoblasts remains difficult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!