It is critical to understand how algorithms structure the information people see and how those algorithms support or undermine society's core values. We offer a normative framework for the assessment of the information curation algorithms that determine much of what people see on the internet. The framework presents two levels of assessment: one for individual-level effects and another for systemic effects. With regard to individual-level effects we discuss whether (a) the information is aligned with the user's interests, (b) the information is accurate, and (c) the information is so appealing that it is difficult for a person's self-regulatory resources to ignore ("agency hacking"). At the systemic level we discuss whether (a) there are adverse civic-level effects on a system-level variable, such as political polarization; (b) there are negative distributional or discriminatory effects; and (c) there are anticompetitive effects, with the information providing an advantage to the platform. The objective of this framework is both to inform the direction of future scholarship as well as to offer tools for intervention for policymakers.

Download full-text PDF

Source
http://dx.doi.org/10.1177/17456916231186779DOI Listing

Publication Analysis

Top Keywords

normative framework
8
curation algorithms
8
individual-level effects
8
effects
6
framework assessing
4
assessing curation
4
algorithms
4
algorithms internet
4
internet critical
4
critical understand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!