Enrichment of microbial consortia for MEOR in crude oil phase of reservoir-produced liquid and their response to environmental disturbance.

Int Microbiol

College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China.

Published: August 2024

AI Article Synopsis

Article Abstract

Developing microbial consortiums is necessary for microbial enhanced oil recovery (MEOR) in heavy crude oil production. The aqueous phase of produced fluid has long been considered an ideal source of microorganisms for MEOR. However, it is recently found that rich microorganisms (including hydrocarbon-degrading bacteria) are present in the crude oil phase, which is completely different from the aqueous phase of produced fluid. So, in this study, the microbial consortia from the crude oil phase of produced fluids derived from four wells were enriched, respectively. The microbial community structure during passage was dynamically tracked, and the response of enriched consortia to successive disturbance of environmental factors was investigated. The results showed the crude oil phase had high microbial diversity, and the original microbial community structure from four wells was significantly different. After ten generations of consecutive enrichment, different genera were observed in the four enriched microbial consortia, namely, Geobacillus, Bacillus, Brevibacillus, Chelativorans, Ureibacillus, and Ornithinicoccus. In addition, two enriched consortia (eG1614 and eP30) exhibited robustness to temperature and oxygen perturbations. These results further suggested that the crude oil phase of produced fluids can serve as a potential microbial source for MEOR.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10123-023-00458-7DOI Listing

Publication Analysis

Top Keywords

crude oil
24
oil phase
20
phase produced
16
microbial consortia
12
microbial
8
aqueous phase
8
produced fluid
8
produced fluids
8
enriched microbial
8
microbial community
8

Similar Publications

Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV-induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins.

View Article and Find Full Text PDF

Degradation of 15 halogenated hydrocarbons by 5 unactivated chemical oxidation oxidants.

Environ Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China.

Oxidants used in the ISCO technology usually require activation by activators to degrade contaminants. However, this study investigated degradation of 15 typical halogenated hydrocarbons by five common ISCO oxidants (PS, PMS, HO, KMnO, SPC) without activation in both pure water and real groundwater. Unactivated PS could degrade 14 halogenated hydrocarbons, excluding tetrachloromethane.

View Article and Find Full Text PDF

The energy-exergy and environ-economic (4E) analysis was conducted on a solar still with and without a hybrid thermal energy storage system (TESS) and a solar air heater. The proposed solar still was modified by integrating a rectangular aluminium box filled with paraffin wax and black gravel as the TESS and coupled with a solar air heater. Paraffin wax was selected due to its widespread availability and proven effectiveness in accelerating desalination, improving process uniformity, and maintaining optimal temperature levels.

View Article and Find Full Text PDF

sp. nov., a crude oil aggregation-forming anaerobic bacterium isolated from marine sediment.

Int J Syst Evol Microbiol

January 2025

Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.

A crude oil aggregation-forming, strictly anaerobic, Gram-stain-positive, spore-forming, rod-shaped, motile and mesophilic bacterium, named strain SH18-2, was isolated from marine sediment near Sado Island in the Sea of Japan. The temperature, salinity and pH ranges of this strain for the growth were 15-40 °C (optimum 35 °C), 0.5-6.

View Article and Find Full Text PDF

Expression of Concern for 'A nanostarch functionalized ionic liquid containing imidazolium cation and cobalt chelate anion for the synthesis of carbamates from amines and dimethyl carbonate' by Subodh Kumar and Suman L. Jain, , 2013, , 15214-15218, https://doi.org/10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!