siRNA Silencing of FpVtg Induces Ovarian Cell Apoptosis in Redtail Prawn, Fenneropenaeus penicillatus.

Mar Biotechnol (NY)

Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China.

Published: December 2023

Inadequate gonadal maturation and poor spawning performance increasingly threaten the sustainability of shrimp aquaculture. Unraveling the mechanisms regulating ovarian development and maturation hence is critical to address industry challenges. Vitellogenin (Vtg), a precursor of yolk protein found in the hepatopancreas and ovary of shrimp, plays a key role in facilitating shrimp's oocyte maturation and embryonic development after oviposition. This study found that FpVtg was specifically expressed in F. penicillatus hepatopancreas and ovary. FpVtg was localized predominantly in the oocyte cytoplasm and distributed uniformly in the hepatopancreas tissue. Silencing FpVtg led to apoptosis in both hepatopancreas and ovary tissues. Furthermore, FpVtg depletion upregulated the expression of ovarian peritrophin 1, ovarian peritrophin 2, serine proteinase inhibitor 6, and juvenile hormone esterase-like carboxylesterase 1, while downregulated that of vitellogenin, delta-9 desaturase, and insulin-like receptor. KEGG pathway analysis implicated such as PI3K-AKT signaling, RNA transport, ECM-receptor interaction, hippo signaling, oocyte meiosis, and apoptosis were enriched and involved in ovarian development. These findings have provided insights into the FpVtg's reproductive role and the associated regulatory genes and pathways in F. penicillatus. This knowledge can contribute to establishing strategies to improve the breeding and aquaculture production of F. penicillatus by elucidating its vitellogenesis regulation in redtail prawn and other penaeid species. Further characterization of the implicated pathways and genes will clarify the intricacies underlying ovarian maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-023-10269-6DOI Listing

Publication Analysis

Top Keywords

hepatopancreas ovary
12
silencing fpvtg
8
redtail prawn
8
ovarian development
8
ovarian peritrophin
8
ovarian
6
fpvtg
5
sirna silencing
4
fpvtg induces
4
induces ovarian
4

Similar Publications

Evaluation of the Effect of Adipokinetic Hormone/Corazonin-Related Peptide (ACP) on Ovarian Development in the Mud Crab, .

Animals (Basel)

December 2024

State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China.

In this study, we identified and its putative receptor from the mud crab and explored its potential role in ovarian development. RT-PCR results suggested was extensively expressed in nervous tissues, the ovary, the middle gut, and the Y-organ, while was highly expressed in the ovary. The expression level of in the ovary, eyestalk, and cerebral ganglia gradually increased during ovarian development, whereas its receptor exhibited an opposite expression pattern in the ovary.

View Article and Find Full Text PDF

Tissue-specific vitellogenesis and 17β-estradiol facilitate ovarian maturation of the swimming crab Portunus trituberculatus.

Comp Biochem Physiol A Mol Integr Physiol

December 2024

Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Aquatic Animal Breeding Center of Shanghai University Knowledge Service Platform, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The present study investigated the changes of expression and localization of PtVg mRNA, tissue Vg/ Vn concentrations, the contents of progesterone and 17ß-estradiol during the ovarian development of P. trituberculatus. The results showed that: 1) The most abundant mRNA levels of PtVg were found in stage IV, and hepatopancreatic PtVg mRNA was markedly greater than that in ovaries from stage II to stage V.

View Article and Find Full Text PDF

Application of the DEB-TKTD model with multi-omics data: Prediction of life history traits of Chinese mitten crab (Eriocheir sinensis) under different salinities.

Ecotoxicol Environ Saf

December 2024

Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China. Electronic address:

Saline-alkaline aquaculture plays a crucial role in the ecological restoration of saline soils, yet high water salinity can significantly restrict the growth of cultured organisms. The Chinese mitten crab (Eriocheir sinensis) is typically farmed in freshwater, to evaluate the effects of salinity stress on these crabs, this study conducted laboratory aquaculture experiments at salinities of ≤ 0.5 (freshwater), 6, 12, and 18 ‰.

View Article and Find Full Text PDF

In this study, we investigated the regulatory roles of the () gene in the reproductive process of female . Its total cDNA length was 1848 bp, encoding for 460 amino acids. It contained conserved domains typical of epoxide hydrolases, such as the Abhydrolase family domain, the EHN epoxide hydrolase superfamily domain, and the "WWG" and "HGWP" motifs.

View Article and Find Full Text PDF

The invasive blue crab is challenging the Mediterranean basin, progressively declining local populations. This reflects a lower prey availability and suitability of dietary nutrients (mainly n-3 polyunsaturated fatty acids, PUFA). The present study aimed to challenge blue crab males and females with a feed source low in n-3 PUFA with respect to one showing a proper fatty acid profile and to investigate the responses in terms of growth, welfare, lipid characterization of target tissues, and reproductive status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!