Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: An increasing number of commercial deep learning computer-aided detection (DL-CAD) systems are available but their cost-saving potential is largely unknown. This study aimed to gain insight into appropriate pricing for DL-CAD in different reading modes to be cost-saving and to determine the potentially most cost-effective reading mode for lung cancer screening.
Methods: In three representative settings, DL-CAD was evaluated as a concurrent, pre-screening, and second reader. Scoping review was performed to estimate radiologist reading time with and without DL-CAD. Hourly cost of radiologist time was collected for the USA (€196), UK (€127), and Poland (€45), and monetary equivalence of saved time was calculated. The minimum number of screening CTs to reach break-even was calculated for one-time investment of €51,616 for DL-CAD.
Results: Mean reading time was 162 (95% CI: 111-212) seconds per case without DL-CAD, which decreased by 77 (95% CI: 47-107) and 104 (95% CI: 71-136) seconds for DL-CAD as concurrent and pre-screening reader, respectively, and increased by 33-41 s for DL-CAD as second reader. This translates into €1.0-4.3 per-case cost for concurrent reading and €0.8-5.7 for pre-screening reading in the USA, UK, and Poland. To achieve break-even with a one-time investment, the minimum number of CT scans was 12,300-53,600 for concurrent reader, and 9400-65,000 for pre-screening reader in the three countries.
Conclusions: Given current pricing, DL-CAD must be priced substantially below €6 in a pay-per-case setting or used in a high-workload environment to reach break-even in lung cancer screening. DL-CAD as pre-screening reader shows the largest potential to be cost-saving.
Critical Relevance Statement: Deep-learning computer-aided lung nodule detection (DL-CAD) software must be priced substantially below 6 euro in a pay-per-case setting or must be used in high-workload environments with one-time investment in order to achieve break-even. DL-CAD as a pre-screening reader has the greatest cost savings potential.
Key Points: • DL-CAD must be substantially below €6 in a pay-per-case setting to reach break-even. • DL-CAD must be used in a high-workload screening environment to achieve break-even. • DL-CAD as a pre-screening reader shows the largest potential to be cost-saving.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682324 | PMC |
http://dx.doi.org/10.1186/s13244-023-01561-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!