Contributions of London Dispersion Forces to Solution-Phase Association Processes.

Acc Chem Res

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.

Published: December 2023

ConspectusDespite their ubiquity and early discovery, London dispersion forces are often overlooked. This is due, in part, to the difficulty in assessing their contributions to molecular and polymeric structure, stability, properties, and reactivities. However, recent advances in modeling have revealed that dispersion interactions play an important role in many important chemical and biological processes. Experimental confirmation of their impact in solution has been challenging, leading to controversies about their relative importance.In the course of studying noncovalent interactions using molecular devices, our understanding and appreciation for the importance of dispersion interactions have evolved. This Account follows this intellectual journey by using examples from the literature. The goals are twofold: to describe recent advances in understanding the interaction and to provide guidance to researchers studying weak noncovalent interactions. However, first, the experimental methods for measuring the effects of dispersion interactions and the strategies for isolating their influence are described. These include the design of molecular devices to measure these weak noncovalent interactions and the strategies to disentangle the solvation, solvophobic, and dispersion components of the resulting equilibria.The literature examples are organized around five fundamental questions. (1) Do dispersion interactions have a measurable effect on solution equilibria? (2) To what extent do solvents attenuate or compensate for dispersion interactions? (3) To what extent do the solvation and solvophobic terms influence the dispersion equilibria? (4) Can we predict whether a system will form attractive dispersion or repulsive steric interactions? (5) Can the dispersion term be isolated and interrogated? We were often surprised by the answers to these questions. In each case, we describe how the systems were designed to address these questions and discuss possible interpretations of the results.While dispersion interactions in solution were weak (usually <1 kcal/mol), their influence on complexation and conformational equilibria can be observed and measured. This underscores the significance of these interactions in molecular recognition, coordination chemistry, reaction design, and catalysis. The solvent components of the dispersion equilibria can also be significant. Therefore, the isolation of the dispersion contributions from the solvation and solvophobic effects represents an ongoing challenge. The experimental studies also provide important benchmarks and offer valuable insights to help refine the next generation of computational solvent models.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.3c00539DOI Listing

Publication Analysis

Top Keywords

dispersion interactions
20
dispersion
12
noncovalent interactions
12
london dispersion
8
dispersion forces
8
interactions
8
molecular devices
8
weak noncovalent
8
interactions strategies
8
solvation solvophobic
8

Similar Publications

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.

View Article and Find Full Text PDF

Plant-microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar-inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators.

View Article and Find Full Text PDF

Aqueous-phase phosphors are of utmost importance for a myriad of applications. However, the emission wavelengths of the current aqueous organic room-temperature phosphorescent (RTP) materials are limited to green and red bands, while the blue part is rarely reported, thus limiting the development of a full-color RTP system. Theoretically, carboxylated benzene is expected to be blue phosphorescence-emissive, but only green phosphorescence is observed in solid, due to the strong intermolecular π-π stacking that decreases the energy gap.

View Article and Find Full Text PDF

While searching for a new host suitable for near infrared (NIR) emission, we explored a new composition NaLaMgWO. The samples were prepared by solid state reaction method. X-ray Diffraction confirms crystallization of NaLaMgWO in monoclinic system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!