The topographical relationships among the lower cranial nerves, internal carotid artery (ICA), and internal jugular vein (IJV) in the upper parapharyngeal neurovascular bundle remain obscure. Thus, details of the anatomy were examined in human fetus histology. We observed the horizontal histological sections from 20 midterm (9-18 weeks) and 12 near-term (28-40 weeks) fetuses. At the external skull base, the glossopharyngeal nerve crosses the anterior aspect of the IJV to reach the medially located Hyrtl's fissure in the petrous temporal bone. The nerve crossed the anterior aspect of the ICA medially near or below the first cervical nerve root. Below the hypoglossal nerve canal, the accessory nerve crosses the anterior or posterior aspects of the IJV and moves laterally. During the half-spiral course, the hypoglossal nerve was tightly attached to the posterolateral-anterior aspects of the vagus nerve and surrounded by a common nerve sheath. The glossopharyngeal ganglia sometimes extended inferiorly to the level of the hypoglossal nerve canal but were absent along the inferior course. The inferior vagal ganglion rarely extends above the occipital condyle. The superior cervical sympathetic ganglion occasionally extends above the first cervical nerve root. The IJV (or ICA) descends to the lateral (or medial) margins of the parapharyngeal neurovascular bundle. The glossopharyngeal (or accessory) nerve crosses the ICA (or IJV) to exit the bundle at the base of the skull (or below the hypoglossal nerve canal). The glossopharyngeal and vagus inferior ganglia differ at each site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.25355 | DOI Listing |
J Anat
January 2025
Graduate School of Medicine, Juntendo University, Tokyo, Japan.
The anatomical innovation of sound-producing organs, which gives rise to a wide variety of sound signals, is one of the most fundamental factors leading to the explosive speciation of modern birds. Despite being a key clue to resolving the homology of sound-controlling muscles among birds, only few studies have explored the embryonic development of syringeal muscles. Using serial histological sections and immunohistochemistry, we described the three-dimensional anatomy and development of the cartilage, muscle, and innervation pattern of the tracheobronchi in three avian species: domestic fowls, cockatiels, and zebra finches.
View Article and Find Full Text PDFLaryngoscope Investig Otolaryngol
February 2025
Objectives: Hypoglossal nerve stimulation (HGNS) is a promising surgical option for patients with obstructive sleep apnea (OSA) who are intolerant of continuous positive airway pressure therapy (CPAP). Efficacy studies for HGNS stimulation largely focus on the apnea-hypopnea index and/or oxygen desaturation index. This study's objective was to show the physiological effects of HGNS stimulation on upper airway patency, airflow, and treatment effect during polysomnography (PSG) testing.
View Article and Find Full Text PDFJ Oral Maxillofac Surg
December 2024
Chief Resident, University of Minnesota, Minneapolis, MN; Associate Surgeon, Oral and Maxillofacial Surgical Consultants, Minneapolis, MN. Electronic address:
BMJ Open
December 2024
Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Introduction: Obstructive sleep apnoea (OSA) is characterised by blood oxygen desaturations and sleep disruptions manifesting undesirable consequences. Existing treatments including oral appliances, positive airway pressure (PAP) therapy and surgically altering the anatomy of the pharynx have drawbacks including poor long-term adherence or often involving irreversible, invasive procedures. Bilateral hypoglossal nerve stimulation (HNS) is a new treatment for managing OSA, and this study is intended to determine whether an HNS system is a safe and effective treatment option for adults with OSA.
View Article and Find Full Text PDFCureus
December 2024
Anesthesiology, University of Texas Medical Branch, Galveston, USA.
We report a case of a 39-year-old male patient who developed propofol-induced fasciculations during the induction of general anesthesia. The patient had a history of moderate obstructive sleep apnea and was intolerant to continuous positive airway pressure therapy. He subsequently underwent the insertion of a hypoglossal nerve stimulator as a viable surgical intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!