Transposable elements (TEs) are mobile genetic elements that can impair the host genome stability and integrity. It has been well documented that activated transposons in plants are suppressed by small interfering (si) RNAs. However, transposon repression by the cytoplasmic RNA surveillance system is unknown. Here, we show that mRNA deadenylation is critical for controlling transposons in Arabidopsis. Trimming of poly(A) tail is a rate-limiting step that precedes the RNA decay and is primarily mediated by the CARBON CATABOLITE REPRESSION 4 (CCR4)-NEGATIVE ON TATA-LESS (NOT) complex. We found that the loss of CCR4a leads to strong derepression and mobilization of TEs in Arabidopsis. Intriguingly, CCR4a regulates a largely distinct set of TEs from those controlled by RNA-dependent RNA Polymerase 6 (RDR6), a key enzyme that produces cytoplasmic siRNAs. This indicates that the cytoplasmic RNA quality control mechanism targets the TEs that are poorly recognized by the previously well-characterized RDR6-mediated pathway, and thereby augments the host genome stability. Our study suggests a hitherto unknown mechanism for transposon repression mediated by RNA deadenylation and unveils a complex nature of the host's strategy to maintain the genome integrity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.19435 | DOI Listing |
Biomolecules
November 2024
Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA.
Lysine succinylation, and its reversal by sirtuin-5 (SIRT5), is known to modulate mitochondrial fatty acid β-oxidation (FAO). We recently showed that feeding mice dodecanedioic acid, a 12-carbon dicarboxylic acid (DC) that can be chain-shortened four rounds to succinyl-CoA, drives high-level protein hypersuccinylation in the peroxisome, particularly on peroxisomal FAO enzymes. However, the ability of SIRT5 to reverse DC-induced peroxisomal succinylation, or to regulate peroxisomal FAO in this context, remained unexplored.
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea.
Unlabelled: was engineered to mitigate carbon catabolite repression to efficient co-fermenting mixed sugars, which are primary components of cellulosic biomass. KDH1 produced ethanol with 0.42 ± 0.
View Article and Find Full Text PDFBioresour Technol
December 2024
Leibniz Institute for Agricultural Engineering and Bioeconomy e. V. (ATB), Department Microbiome Biotechnology, Max-Eyth-Allee 100, Potsdam 14469, Germany. Electronic address:
Lignocellulosic media, containing diverse sugars and growth inhibitor compounds, pose great challenges to fermentation processes. This study tested thermophile Heyndrickxia coagulans strains for the production of L-(+)-lactic acid from waste wood hydrolysate. H.
View Article and Find Full Text PDFPrep Biochem Biotechnol
December 2024
Post Graduate Department of Biosciences & Biotechnology, Fakir Mohan University, Balasore, Odisha, India.
Sorbitol, known as D-Glucitol, is a hexose sugar alcohol that occurs naturally in various fruits, including berries, cherries, plums, pears, and apples. It is noteworthy that sorbitol can be metabolized by microbes, plants, and humans through distinct pathways. Nevertheless, in bacteria like (), sorbitol is not the primary carbon source and its utilization is generally suppressed due to carbon catabolite repression.
View Article and Find Full Text PDFBiochem Soc Trans
December 2024
Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A.
Staphylococcus aureus is a highly significant pathogen with several well studied and defined virulence factors. However, the metabolic pathways that are required to facilitate infection are not well described. Previous data have documented that S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!