Neural tube closure (NTC) is a critical process during embryonic development. Failure in this process can lead to neural tube defects, causing congenital malformations or even mortality. NTC involves a series of mechanisms on genetic, molecular, and mechanical levels. While mechanical regulation has become an increasingly attractive topic in recent years, it remains largely unexplored due to the lack of suitable technology for conducting mechanical testing of 3D embryonic tissue in situ. In response, we have developed a protocol for quantifying the mechanical properties of chicken embryonic tissue in a non-contact and non-invasive manner. This is achieved by integrating a confocal Brillouin microscope with an on-stage incubation system. To probe tissue mechanics, a pre-cultured embryo is collected and transferred to an on-stage incubator for ex ovo culture. Simultaneously, the mechanical images of the neural plate tissue are acquired by the Brillouin microscope at different time points during development. This protocol includes detailed descriptions of sample preparation, the implementation of Brillouin microscopy experiments, and data post-processing and analysis. By following this protocol, researchers can study the mechanical evolution of embryonic tissue during development longitudinally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456995 | PMC |
http://dx.doi.org/10.3791/66117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!