During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781421PMC
http://dx.doi.org/10.7554/eLife.80936DOI Listing

Publication Analysis

Top Keywords

osteochondral unit
12
aquatic mammals
12
osteochondral
5
microstructural differences
4
differences osteochondral
4
unit terrestrial
4
aquatic
4
terrestrial aquatic
4
mammals
4
mammals evolution
4

Similar Publications

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Objectives: Histological osteochondral characteristics of inflammation, fibrosis, vascularity, cartilage islands, vessels entering cartilage, thickened trabeculae and cysts are associated with bone marrow lesions (BMLs) in human knee osteoarthritis (OA). We identified and developed a method for scoring comparable pathology in two rat OA knee pain models.

Methods: Rats (n ​= ​8-10 per group) were injected with monoiodoacetate (MIA) or saline, or underwent meniscal transection (MNX) or sham surgery.

View Article and Find Full Text PDF

Osteoarthritis (OA) has long been considered a disease of the articular cartilage. Within the past decade it has become increasingly clear that OA is a disease of the entire joint space and that interactions between articular cartilage and subchondral bone likely play an important role in the disease. Driven by this knowledge, we have created a novel microphysiological model of the osteochondral unit containing synovium, cartilage, bone, and vasculature in separate compartments with molecular and direct cell-cell interaction between the cells from the different tissue types.

View Article and Find Full Text PDF

This study aims to evaluate the osteoconductive and osteoinductive potential of novel composite collagenous sponges enriched with keratin (K), hydroxyapatite (HA), and their combination (K+HA) for osteochondral regeneration in rat knee models. By examining cell proliferation, mineralization, and vascularization, we aim to determine the regenerative effectiveness of these materials in promoting osteochondral repair, particularly in load-bearing joints like the knee. Addressing the problem of osteochondral defects (OCD), which lead to osteoarthritis-a condition characterized by pain and functional impairment-the hereby research evaluates these biomaterials for their potential to foster bone and cartilage repair, especially in load-bearing joints as the knee.

View Article and Find Full Text PDF

A novel tape-free sample preparation method for human osteochondral cryosections for high throughput hyperspectral imaging.

Histochem Cell Biol

December 2024

School of Mechanical, Medical & Process Engineering, Queensland University of Technology, 60 Musk Ave/Cnr. Blamey St, Kelvin Grove, Brisbane, QLD, 4059, Australia.

Understanding the osteochondral junction, where non-mineralised cartilage and mineralised bone converge, is crucial for joint health. Current sample preparation techniques are insufficient for detailed spatial hyperspectral imaging analysis. Using the enhanced Kawamoto method, we used the super cryo embedding medium's temperature-dependent properties to transfer high-quality tissue samples onto slides for spatial imaging analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!