Developing eco-friendly and low-cost advanced anode materials, such as FeO and MnO, is fundamental to improve the electrochemical performance of lithium-ion batteries (LIBs). The rational engineering of the microstructure of FeO and MnO to endow it with one-dimensionally and hierarchically porous architecture is a feasible way to further improve and optimize the electrochemical performance of the anode materials. Herein, we demonstrate a facile strategy to prepare nanotubular FeO and MnO as advanced anode materials for high-performance LIBs. By combining the merits of the one-dimensionally nanotubular morphology and hierarchically porous structure, limitations in the lithiation activity of MnO and FeO anode materials, such as low electrical conductivity, large volume expansion, and sluggish lithium-ion diffusion within the materials, have been effectively overcome. When used as anode materials, t-FeO and t-MnO exhibited outstanding electrochemical performances, including a high reversible discharge capacity (859.7 and 901.4 mA h g for t-FeO and t-MnO, respectively), excellent rate performance, and ultra-stable cycling stability. Such superior electrochemical performances proved the exceptional potential of the materials for the real-world application in LIBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt03354f | DOI Listing |
Eur Arch Otorhinolaryngol
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
Objective: Intraoperative systems for monitoring facial nerve function, in which temporal electrical stimulation is applied to the facial nerve through electrodes, are used in many surgeries requiring facial nerve preservation; however, continuous stimulation or quantitative evaluation of facial nerve function is difficult with this approach. We examined the usefulness of a continuous and quantitative facial nerve-monitoring system for temporal bone lesions by using our experience to modify the existing methods used for cases involving vestibular schwannomas.
Study Design: Retrospective observational study.
Mikrochim Acta
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
Pocket hematoma is a common and serious complication following cardiac implantable electronic device (CIED) implantation, contributing to significant morbidity and mortality. This study aimed to evaluate the efficacy of a novel pocket compression device in reducing pocket hematoma occurrence. We enrolled 242 patients undergoing CIED implantation, randomly assigning them to receive either the novel compression vest with a pressure cuff or conventional sandbag compression.
View Article and Find Full Text PDFExp Neurol
January 2025
Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada. Electronic address:
Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Mechanical Engineering and Mechanics, School of Chemistry, Xiangtan University, Xiangtan 411105 PR China. Electronic address:
Developing insertion-type anodes is essential for designing high-performance "rocking chair" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!