Nitrogen-Doped Carbon Cubosomes as an Efficient Electrocatalyst with High Accessibility of Internal Active Sites.

ACS Nano

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Published: December 2023

Porous carbon particles (PCPs) present considerable potential for applications across a wide range of fields, particularly within the realms of energy and catalysis. The control of their overall morphologies and pore structures has remained a big challenge. Here, using metal-organic frameworks (MOFs) as the precursor and polymer cubosomes (PCs) as the template, nitrogen-doped carbon cubosomes (SP-NCs) with a single primitive bicontinuous architecture are prepared. SP-NCs inherit the high porosity of MOFs, generating a high specific surface area of 825 m g and uniformly distributed active sites with a 5.9 at % nitrogen content. Thanks to the presence of three-dimensional continuous mesochannels that enable much higher accessibility of internal active sites over those of their porous counterparts' lack of continuous channels, SP-NCs exhibit superior electrocatalytic performance for oxygen reduction reaction with a half-wave potential of 0.87 V, situating them in the leading level of the reported carbon electrocatalysts. Serving as an air cathode catalyst of the Zn-air battery, SP-NCs exhibit excellent performance, outperforming the commercial Pt/C catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c07963DOI Listing

Publication Analysis

Top Keywords

active sites
12
nitrogen-doped carbon
8
carbon cubosomes
8
accessibility internal
8
internal active
8
sites porous
8
sp-ncs exhibit
8
cubosomes efficient
4
efficient electrocatalyst
4
electrocatalyst high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!