This paper reports on a novel approach for the fabrication of composite multilayered bioink-nanofibers construct. This work achieves this by using a hands-free 3D (bio)printing integrated touch-spinning approach. Additionally, this work investigates the interaction of fibroblasts in different bioinks with the highly aligned touch-spun nanofibers. This work conducts a comprehensive characterization of the rheological properties of the inks, starting with low-strain oscillatory rheology to analyze the viscoelastic behavior, when the material structure remains intact. Moreover, this work performs amplitude sweeps to investigate the stability of the inks under large deformations, rotational rheology to examine the shear thinning profile, and a three-step creep experiment to study time-dependent rheological behavior. The obtained rheological results are correlated to visual observation of the flow behavior of inks. These behaviors span from an ink with zero-shear viscosity, very weak shear thinning, and no thixotropic behavior to inks exhibiting flow stress, pronounced shear thinning, and thixotropy. It is demonstrated that inks have an essential effect on cell behavior. While all bioinks allow a preferred directionality of the fibroblasts along the fiber direction, cells tend to form aggregates in bioinks with higher viscosity, and a considerable number of agglomerates are observed in the presence of laponite-RD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469018PMC
http://dx.doi.org/10.1002/adhm.202303343DOI Listing

Publication Analysis

Top Keywords

shear thinning
12
rheological properties
8
behavior inks
8
inks
5
behavior
5
biofabrication composite
4
composite bioink-nanofiber
4
bioink-nanofiber constructs
4
rheological
4
constructs rheological
4

Similar Publications

Yogurt is a popular milk-based product known for its nutritional benefits and effects on the large intestine. However, yogurt production faces challenges like texture, consistency, and syneresis. Hydrocolloids, such as gums and polysaccharides, can enhance yogurt's consistency and rheological properties.

View Article and Find Full Text PDF

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Prospects of cowpea protein as an alternative and natural emulsifier for food applications: Effect of pH and oil concentration.

Int J Biol Macromol

January 2025

Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, Brazil. Electronic address:

In response to the growing need to expand the knowledge base on novel, more sustainable protein sources, this study investigated the effectiveness of cowpea protein concentrate (CPC) as a natural emulsifying agent, examining the relationships between pH (3-11), oil concentration (2-10 %), and emulsion stability. pH and oil concentration significantly impacted droplet size distribution, with uniformity decreasing in the order of pH 9 > pH 11 > pH 7, which was attributed to droplet coalescence and flocculation. As evidenced by circular dichroism, alkalinity induced a slight increase in the beta-sheet content of CPC, while simultaneously reducing the alpha-helix content.

View Article and Find Full Text PDF

Study on Starch-Based Thickeners in Chyme for Dysphagia Use.

Foods

December 2024

College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.

A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of commercially available natural, pregelatinised, acetylated, and phosphorylated maize starch and tapioca starch.

View Article and Find Full Text PDF

Conventional PP with a linear chain structure is not suitable for foam processing due to its poor rheological properties. In this study, PP was modified with PE through reactive melt blending of maleic anhydride-grafted PP (MA-PP) with a small amount of PE bearing glycidyl groups on its backbone (G-PE), with the aim of enhancing the melt rheological properties of PP to make it suitable for foam processing. An anhydride-epoxy reaction occurred between MA-PP and G-PE during the melt processing, resulting in the formation of a crosslinked polymer network, which was confirmed by FTIR spectroscopy, a solubility test, and the presence of a rubbery plateau above the melting point.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!