Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched Inflammatory /Autophagy TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8 T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701618 | PMC |
http://dx.doi.org/10.15252/emmm.202318028 | DOI Listing |
ACS Nano
January 2025
School of Medicine, Nankai University, Tianjin 300071, China.
Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.
View Article and Find Full Text PDFNat Prod Res
January 2025
Institute of Biopharmaceutical and Health Engineering, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Gene and Antibody Therapy, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
Sophaline B (SPB), extracted from the seeds of L., is a natural bioactive compound that effectively exerts antiviral activities against the hepatitis B virus. This is the first study to demonstrate that SPB exerts anti-tumor effects on NSCLC by inducing pyroptosis and autophagy.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Cancer Biology Transfer Platform, Georges François Leclerc Cancer Center, UNICANCER, 21000 Dijon, France.
Background/objectives: Metastatic colorectal cancer (mCRC) is mainly treated with 5-Fluoro-Uracil (5-FU), Oxaliplatin and Irinotecan chemotherapies and anti-Epidermal Growth Factor Receptor (EGFR) or anti-Vascular Endothelial Growth Factor (VEGF) targeted therapies. Due to chemotherapy-related toxicity, patients receive induction treatment to achieve tumour response followed by maintenance therapy with less cytotoxic molecules or a chemotherapy-free interval to reduce chemotherapy-related toxicity. In this study, the aim was to determine the patient, cancer and treatment factors that influence the duration of maintenance therapy (DMT).
View Article and Find Full Text PDFCancers (Basel)
December 2024
Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France.
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5/CD19 B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland.
The vast majority of breast cancer patients require radiotherapy but some of them will develop local recurrences and potentially metastases in the future. Recent data show that exosomal cargo is essential in these processes. Thus, we investigated the influence of ionising radiation on exosome properties and their ability to modify the sensitivity and biology of non-irradiated cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!