Many trees exhibit masting - where reproduction is temporally variable and synchronous over large areas. Several dominant masting species occur in tropical cyclone (TC)-prone regions, but it is unknown whether TCs correlate with mast seeding. We analyzed long-term data (1958-2022) to test the hypothesis that TCs influence cone production in longleaf pine (Pinus palustris). We integrate field observations, weather data, satellite imagery, and hurricane models to test whether TCs influence cone production via: increased precipitation; canopy density reduction; and/or mechanical stress from wind. Cone production was 31% higher 1 yr after hurricanes and 71% higher after 2 yr, before returning to baseline levels. Cyclone-associated precipitation was correlated with increased cone production in wet years and cone production increased after low-intensity winds (≤ 25 m s ) but not with high-intensity winds (> 25 m s ). Tropical cyclones may stimulate cone production via precipitation addition, but high-intensity winds may offset any gains. Our study is the first to support the direct influence of TCs on reproduction, suggesting a previously unknown environmental correlate of masting, which may occur in hurricane-prone forests world-wide.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.19381DOI Listing

Publication Analysis

Top Keywords

cone production
28
tropical cyclone
8
stimulate cone
8
masting species
8
longleaf pine
8
pine pinus
8
pinus palustris
8
tcs influence
8
influence cone
8
production increased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!